See axolotl config
axolotl version: 0.8.0.dev0
base_model: mistralai/Mistral-Nemo-Base-2407
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretraining-SCPWiki-032025-12B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: AiAF/Pretraining-SCPWiki-032025-7B-Instruct-pretraining.jsonl
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/out/Pretraining-SCPWiki-032025-12B-V1
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "Pretraining-SCPWiki-032025-12B-V1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
save_total_limit: 30
warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<pad>"
bos_token: "<s>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
Pretraining-SCPWiki-032025-12B-Instruct
This model is a fine-tuned version of mistralai/Mistral-Nemo-Base-2407 on the AiAF/Pretraining-SCPWiki-032025-7B-Instruct-pretraining.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.5467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1576 | 0.0018 | 1 | 3.5143 |
1.4459 | 0.0511 | 29 | 1.6213 |
1.4502 | 0.1022 | 58 | 1.6003 |
1.5545 | 0.1534 | 87 | 1.5870 |
1.3624 | 0.2045 | 116 | 1.5779 |
1.3053 | 0.2556 | 145 | 1.5691 |
1.5688 | 0.3067 | 174 | 1.5635 |
1.7144 | 0.3579 | 203 | 1.5594 |
1.5199 | 0.4090 | 232 | 1.5550 |
1.2483 | 0.4601 | 261 | 1.5516 |
1.4053 | 0.5112 | 290 | 1.5493 |
1.4238 | 0.5624 | 319 | 1.5486 |
1.4939 | 0.6135 | 348 | 1.5477 |
1.4072 | 0.6646 | 377 | 1.5472 |
1.6039 | 0.7157 | 406 | 1.5469 |
1.3127 | 0.7669 | 435 | 1.5468 |
1.4754 | 0.8180 | 464 | 1.5466 |
1.5992 | 0.8691 | 493 | 1.5467 |
1.421 | 0.9202 | 522 | 1.5467 |
1.2666 | 0.9714 | 551 | 1.5467 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AiAF/Pretraining-SCPWiki-032025-12B-Instruct
Base model
mistralai/Mistral-Nemo-Base-2407