AiAF commited on
Commit
7c166b3
·
verified ·
1 Parent(s): 27f02ef

End of training

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-v0.1
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - AiAF/Codename-75567-Pretrainin.jsonl
10
+ model-index:
11
+ - name: Pretrained-Codename-75567-V1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.8.0.dev0`
22
+ ```yaml
23
+ base_model: mistralai/Mistral-7B-v0.1
24
+ # optionally might have model_type or tokenizer_type
25
+ model_type: MistralForCausalLM
26
+ tokenizer_type: LlamaTokenizer
27
+ # Automatically upload checkpoint and final model to HF
28
+ hub_model_id: AiAF/Pretrained-Codename-75567-V1
29
+
30
+ load_in_8bit: false
31
+ load_in_4bit: false
32
+ strict: false
33
+
34
+ datasets:
35
+ - path: AiAF/Codename-75567-Pretrainin.jsonl
36
+ type: completion
37
+ dataset_prepared_path:
38
+ val_set_size: 0.05
39
+ output_dir: ./outputs/out
40
+
41
+ sequence_len: 512
42
+ sample_packing: true
43
+ pad_to_sequence_len: true
44
+ eval_sample_packing: false
45
+
46
+ wandb_project: "LLM-Pretraining"
47
+ wandb_entity:
48
+ wandb_watch: "all"
49
+ wandb_name: "Codename-75567-V1"
50
+ wandb_log_model: "false"
51
+
52
+ gradient_accumulation_steps: 4
53
+ micro_batch_size: 2
54
+ num_epochs: 4
55
+ optimizer: adamw_bnb_8bit
56
+ lr_scheduler: cosine
57
+ learning_rate: 0.000005
58
+
59
+ train_on_inputs: false
60
+ group_by_length: false
61
+ bf16: auto
62
+ fp16:
63
+ tf32: false
64
+
65
+ gradient_checkpointing: true
66
+ early_stopping_patience:
67
+ resume_from_checkpoint:
68
+ local_rank:
69
+ logging_steps: 1
70
+ xformers_attention:
71
+ flash_attention: true
72
+
73
+ warmup_steps: 1
74
+ evals_per_epoch: 5
75
+ eval_table_size:
76
+ eval_max_new_tokens: 128
77
+ saves_per_epoch: 1
78
+ debug:
79
+ deepspeed:
80
+ weight_decay: 0.0
81
+ fsdp:
82
+ fsdp_config:
83
+ special_tokens:
84
+
85
+ ```
86
+
87
+ </details><br>
88
+
89
+ # Pretrained-Codename-75567-V1
90
+
91
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the AiAF/Codename-75567-Pretrainin.jsonl dataset.
92
+ It achieves the following results on the evaluation set:
93
+ - Loss: 1.5809
94
+
95
+ ## Model description
96
+
97
+ More information needed
98
+
99
+ ## Intended uses & limitations
100
+
101
+ More information needed
102
+
103
+ ## Training and evaluation data
104
+
105
+ More information needed
106
+
107
+ ## Training procedure
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - learning_rate: 5e-06
113
+ - train_batch_size: 2
114
+ - eval_batch_size: 2
115
+ - seed: 42
116
+ - gradient_accumulation_steps: 4
117
+ - total_train_batch_size: 8
118
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
119
+ - lr_scheduler_type: cosine
120
+ - lr_scheduler_warmup_steps: 2
121
+ - num_epochs: 4.0
122
+
123
+ ### Training results
124
+
125
+ | Training Loss | Epoch | Step | Validation Loss |
126
+ |:-------------:|:------:|:----:|:---------------:|
127
+ | 1.7902 | 0.3333 | 1 | 1.7724 |
128
+ | 1.8972 | 0.6667 | 2 | 1.6288 |
129
+ | 1.6898 | 1.0 | 3 | 1.5141 |
130
+ | 1.3171 | 1.3333 | 4 | 1.5028 |
131
+ | 1.1106 | 1.6667 | 5 | 1.5158 |
132
+ | 1.149 | 2.0 | 6 | 1.5504 |
133
+ | 0.8633 | 2.3333 | 7 | 1.5803 |
134
+ | 0.767 | 2.6667 | 8 | 1.5793 |
135
+ | 0.7649 | 3.0 | 9 | 1.5767 |
136
+ | 0.6748 | 3.3333 | 10 | 1.5816 |
137
+ | 0.6898 | 3.6667 | 11 | 1.5816 |
138
+ | 0.6616 | 4.0 | 12 | 1.5809 |
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - Transformers 4.49.0
144
+ - Pytorch 2.5.1+cu124
145
+ - Datasets 3.2.0
146
+ - Tokenizers 0.21.0