Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretrained-Codename-75567-V1

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: AiAF/Codename-75567-Pretrainin.jsonl
    type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "Codename-75567-V1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 1
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Pretrained-Codename-75567-V1

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/Codename-75567-Pretrainin.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
1.7902 0.3333 1 1.7724
1.8972 0.6667 2 1.6288
1.6898 1.0 3 1.5141
1.3171 1.3333 4 1.5028
1.1106 1.6667 5 1.5158
1.149 2.0 6 1.5504
0.8633 2.3333 7 1.5803
0.767 2.6667 8 1.5793
0.7649 3.0 9 1.5767
0.6748 3.3333 10 1.5816
0.6898 3.6667 11 1.5816
0.6616 4.0 12 1.5809

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
85
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for AiAF/Pretrained-Codename-75567-V1

Finetuned
(876)
this model