See axolotl config
axolotl version: 0.8.0.dev0
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretrained-Codename-75567-V1
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: AiAF/Codename-75567-Pretrainin.jsonl
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "Codename-75567-V1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 1
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Pretrained-Codename-75567-V1
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/Codename-75567-Pretrainin.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.5809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7902 | 0.3333 | 1 | 1.7724 |
1.8972 | 0.6667 | 2 | 1.6288 |
1.6898 | 1.0 | 3 | 1.5141 |
1.3171 | 1.3333 | 4 | 1.5028 |
1.1106 | 1.6667 | 5 | 1.5158 |
1.149 | 2.0 | 6 | 1.5504 |
0.8633 | 2.3333 | 7 | 1.5803 |
0.767 | 2.6667 | 8 | 1.5793 |
0.7649 | 3.0 | 9 | 1.5767 |
0.6748 | 3.3333 | 10 | 1.5816 |
0.6898 | 3.6667 | 11 | 1.5816 |
0.6616 | 4.0 | 12 | 1.5809 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 85
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AiAF/Pretrained-Codename-75567-V1
Base model
mistralai/Mistral-7B-v0.1