See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Finetuned-SCPWiki-032025-7B-Instruct
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: AiAF/Finetuning-SCPWiki-032025-7B-Instruct-plain_qa_list
ds_type: json
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: from
message_field_content: value
roles:
user:
- human
assistant:
- gpt
system:
- system
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out/Finetuned-SCPWiki-032025-7B-Instruct-V1
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "LLM-Finetuning"
wandb_entity:
wandb_watch: "all"
wandb_name: "Finetuned-SCPWiki-032025-7B-Instruct-V1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Finetuned-SCPWiki-032025-7B-Instruct
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2898
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3436 | 0.0301 | 1 | 1.3905 |
1.358 | 0.2105 | 7 | 1.3875 |
1.2051 | 0.4211 | 14 | 1.3651 |
1.3802 | 0.6316 | 21 | 1.3418 |
1.266 | 0.8421 | 28 | 1.3300 |
1.287 | 1.0526 | 35 | 1.3222 |
1.2226 | 1.2632 | 42 | 1.3141 |
1.1621 | 1.4737 | 49 | 1.3074 |
1.4156 | 1.6842 | 56 | 1.3021 |
1.3251 | 1.8947 | 63 | 1.2985 |
1.0981 | 2.1053 | 70 | 1.2956 |
1.3638 | 2.3158 | 77 | 1.2936 |
1.1033 | 2.5263 | 84 | 1.2923 |
1.2248 | 2.7368 | 91 | 1.2911 |
1.2687 | 2.9474 | 98 | 1.2903 |
1.186 | 3.1579 | 105 | 1.2900 |
1.325 | 3.3684 | 112 | 1.2896 |
1.2011 | 3.5789 | 119 | 1.2896 |
1.1852 | 3.7895 | 126 | 1.2898 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for AiAF/Finetuned-SCPWiki-032025-7B-Instruct
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3