Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Finetuned-SCPWiki-032025-7B-Instruct

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: AiAF/Finetuning-SCPWiki-032025-7B-Instruct-plain_qa_list
    ds_type: json
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    roles:
      user:
        - human
      assistant:
        - gpt
      system:
        - system
        
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out/Finetuned-SCPWiki-032025-7B-Instruct-V1

adapter: qlora
lora_model_dir:

sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "LLM-Finetuning"
wandb_entity:
wandb_watch: "all"
wandb_name: "Finetuned-SCPWiki-032025-7B-Instruct-V1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Finetuned-SCPWiki-032025-7B-Instruct

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.3436 0.0301 1 1.3905
1.358 0.2105 7 1.3875
1.2051 0.4211 14 1.3651
1.3802 0.6316 21 1.3418
1.266 0.8421 28 1.3300
1.287 1.0526 35 1.3222
1.2226 1.2632 42 1.3141
1.1621 1.4737 49 1.3074
1.4156 1.6842 56 1.3021
1.3251 1.8947 63 1.2985
1.0981 2.1053 70 1.2956
1.3638 2.3158 77 1.2936
1.1033 2.5263 84 1.2923
1.2248 2.7368 91 1.2911
1.2687 2.9474 98 1.2903
1.186 3.1579 105 1.2900
1.325 3.3684 112 1.2896
1.2011 3.5789 119 1.2896
1.1852 3.7895 126 1.2898

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for AiAF/Finetuned-SCPWiki-032025-7B-Instruct

Adapter
(248)
this model