galaxy_gen
galaxy_gen
is a library to generate galaxy data/distributions. The models used are present in this page.
Installation
You can install the package using pip:
pip install galaxy_gen
Usage
Here is an example of how to use the galaxy_gen library:
# example_usage.py
import torch
import matplotlib.pyplot as plt
import galaxy_gen
from galaxy_gen.sampler import load_model, generate_samples
import os
# Path to your saved model checkpoint.
model_path = os.path.join(os.path.dirname(galaxy_gen.__file__), 'models/sample_model')
device = 'cpu' # or 'cuda' if you have a GPU
# Load the model.
model = load_sample_model(model_path, device=device)
# Generate random samples.
samples = generate_samples(model)
# (Optional) Visualize the samples.
samples = samples.cpu().numpy()
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
for i, ax in enumerate(axes.flatten()):
ax.imshow(samples[i][0], cmap='gray')
ax.axis('off')
plt.show()
Another expample to use the pre-trained model
# example_usage.py
import torch
import matplotlib.pyplot as plt
from galaxy_gen.sampler import load_model, generate_metallicity_samples, generate_formationtime_samples
# Path to your saved model checkpoint.
model_path = 'models/formationtime_model.pth'
device = 'cpu' # or 'cuda' if you have a GPU
# Load the model.
model = load_model("formation_time",model_path, device=device)
# Generate random samples.
samples = generate_formationtime_samples(model)
# (Optional) Visualize the samples.
samples = samples.cpu().numpy()
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
for i, ax in enumerate(axes.flatten()):
ax.imshow(samples[i][0])
ax.axis('off')
plt.show()
License
This project is licensed under the MIT License - see the LICENSE file for details.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.