from transformers import pipeline import gradio as gr pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier" pretrained_ner = "cahya/bert-base-indonesian-NER" sentiment_pipeline = pipeline( "sentiment-analysis", model=pretrained_sentiment, tokenizer=pretrained_sentiment, return_all_scores=True ) ner_pipeline = pipeline( "ner", model=pretrained_ner, tokenizer=pretrained_ner ) examples = [ "Masyarakat sangat kecewa dengan tragedi Kanjuruhan", "Jokowi mengutuk kepolisian atas kerusuhan yang terjadi di Malang" ] def sentiment_analysis(text): output = sentiment_pipeline(text) return {elm["label"]: elm["score"] for elm in output[0]} def ner(text): output = ner_pipeline(text) return {"text": text, "entities": output} demo = gr.Interface( fn=[sentiment_analysis, ner], inputs=gr.Textbox(placeholder="Enter a sentence here..."), outputs=["label", gr.HighlightedText()], interpretation=["default"], examples=[examples]) if __name__ == "__main__": demo.launch()