File size: 1,385 Bytes
2168cf5
 
 
6ce2f8e
2168cf5
7f68476
 
2168cf5
7f68476
ef26fd6
7f68476
 
a60235f
2168cf5
 
7f68476
 
 
 
 
 
2168cf5
42535f1
 
 
2168cf5
 
ef26fd6
7f68476
d961c51
7f68476
 
 
 
2168cf5
c0d80b6
53c2635
92bbd4b
8289c6f
2168cf5
0fc2865
 
92bbd4b
0fc2865
8289c6f
c0d80b6
2168cf5
6ce2f8e
8289c6f
92bbd4b
dc02166
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from transformers import pipeline

import gradio as gr
from gradio.mix import Parallel

pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier"
pretrained_ner = "cahya/bert-base-indonesian-NER"

sentiment_pipeline = pipeline(
    "sentiment-analysis",
    model=pretrained_sentiment,
    tokenizer=pretrained_sentiment,
    return_all_scores=True
)

ner_pipeline = pipeline(
    "ner",
    model=pretrained_ner,
    tokenizer=pretrained_ner
)

examples = [
    "Jokowi sangat kecewa dengan POLRI atas kerusuhan yang terjadi di Malang",
    "Lesti marah terhadap perlakuan KDRT yang dilakukan oleh Bilar",
    "Ungkapan rasa bahagia diutarakan oleh Coki Pardede karena kebabasannya dari penjara"
]

def sentiment_analysis(text):
    output = sentiment_pipeline(text)
    return {elm["label"]: elm["score"] for elm in output[0]}
    
def ner(text):
    output = ner_pipeline(text)
    return {"text": text, "entities": output}

sentiment_demo = gr.Interface(
    fn=sentiment_analysis,
    inputs="text",
    outputs="label")

ner_demo = gr.Interface(
    ner,
    "text",
    gr.HighlightedText(),
    examples=examples)

if __name__ == "__main__":
    Parallel(sentiment_demo, ner_demo,
    inputs=gr.Textbox(lines=10, label="Input Text", placeholder="Enter sentences here..."),
    title="Entity Based Sentiment Analysis Indonesia",
    examples=examples).launch()