File size: 3,595 Bytes
9a25cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
from pathlib import Path
from difflib import get_close_matches

class DocumentSearcher:
    def __init__(self):
        self.documents = []
        self.malicious_patterns = ["DROP TABLE", "SELECT *", "INSERT INTO", "DELETE FROM", "--", ";"]

    def load_imdb_data(self):
        # Define the dataset path using the HOME environment variable
        home_dir = Path(os.getenv("HOME", "/"))  # Fallback to root if HOME is not set
        data_dir = home_dir / "data-sets/aclImdb/train"

        pos_dir = data_dir / "pos"
        neg_dir = data_dir / "neg"

        print(f"Looking for positive reviews in: {pos_dir}")
        print(f"Looking for negative reviews in: {neg_dir}")

        if not pos_dir.exists() or not any(pos_dir.iterdir()):
            print("No positive reviews found.")
        if not neg_dir.exists() or not any(neg_dir.iterdir()):
            print("No negative reviews found.")

        # Load positive reviews
        for filename in pos_dir.iterdir():
            with open(filename, "r", encoding="utf-8") as file:
                self.documents.append(file.read())

        # Load negative reviews
        for filename in neg_dir.iterdir():
            with open(filename, "r", encoding="utf-8") as file:
                self.documents.append(file.read())

        print(f"Loaded {len(self.documents)} movie reviews from IMDB dataset.")

    def load_txt_files(self, txt_dir=None):
        if txt_dir is None:
            home_dir = Path(os.getenv("HOME", "/"))
            txt_dir = home_dir / "data-sets/txt-files/"

        if not txt_dir.exists():
            print("No .txt files directory found.")
            return

        # Load all .txt files
        for filename in txt_dir.glob("*.txt"):
            with open(filename, "r", encoding="utf-8") as file:
                self.documents.append(file.read())

        print(f"Loaded additional {len(self.documents)} documents from .txt files.")

    def is_query_malicious(self, query):
        for pattern in self.malicious_patterns:
            if pattern.lower() in query.lower():
                print(f"Warning: Malicious query detected - {pattern}")
                return True
        return False

    def search_documents(self, query):
        if self.is_query_malicious(query):
            return [{"document": "ANOMALY: Query blocked due to detected malicious content.", "similarity": 0.0}]

        # Use fuzzy matching for normal queries
        matches = get_close_matches(query, self.documents, n=5, cutoff=0.3)

        if not matches:
            return [{"document": "No matching documents found.", "similarity": 0.0}]

        return [{"document": match[:100] + "..."} for match in matches]

# Test the system with normal and malicious queries
def test_document_search():
    searcher = DocumentSearcher()

    # Load the IMDB movie reviews
    searcher.load_imdb_data()

    # Load additional .txt files
    searcher.load_txt_files()

    # Perform a normal query
    normal_query = "This movie had great acting and a compelling storyline."
    normal_results = searcher.search_documents(normal_query)
    print("Normal Query Results:")
    for result in normal_results:
        print(f"Document: {result['document']}")

    # Perform a query injection attack
    malicious_query = "DROP TABLE reviews; SELECT * FROM confidential_data;"
    attack_results = searcher.search_documents(malicious_query)
    print("\nMalicious Query Results:")
    for result in attack_results:
        print(f"Document: {result['document']}")

if __name__ == "__main__":
    test_document_search()