Spaces:
Runtime error
Runtime error
Commit
·
7f2756e
1
Parent(s):
dc8acb8
improve memory usage for zero GPUs
Browse files
pipelines/pipeline_flux_infusenet.py
CHANGED
@@ -359,6 +359,11 @@ class FluxInfuseNetPipeline(FluxControlNetPipeline):
|
|
359 |
lora_scale=lora_scale,
|
360 |
)
|
361 |
|
|
|
|
|
|
|
|
|
|
|
362 |
# 3. Prepare control image
|
363 |
num_channels_latents = self.transformer.config.in_channels // 4
|
364 |
if isinstance(self.controlnet, FluxControlNetModel):
|
@@ -492,11 +497,6 @@ class FluxInfuseNetPipeline(FluxControlNetPipeline):
|
|
492 |
]
|
493 |
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
|
494 |
|
495 |
-
# CPU offload T5, move back controlnet to GPU
|
496 |
-
self.text_encoder_2.cpu()
|
497 |
-
torch.cuda.empty_cache()
|
498 |
-
self.controlnet.to(device)
|
499 |
-
|
500 |
# 7. Denoising loop
|
501 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
502 |
for i, t in enumerate(timesteps):
|
|
|
359 |
lora_scale=lora_scale,
|
360 |
)
|
361 |
|
362 |
+
# CPU offload T5, move back controlnet to GPU
|
363 |
+
self.text_encoder_2.cpu()
|
364 |
+
torch.cuda.empty_cache()
|
365 |
+
self.controlnet.to(device)
|
366 |
+
|
367 |
# 3. Prepare control image
|
368 |
num_channels_latents = self.transformer.config.in_channels // 4
|
369 |
if isinstance(self.controlnet, FluxControlNetModel):
|
|
|
497 |
]
|
498 |
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
|
499 |
|
|
|
|
|
|
|
|
|
|
|
500 |
# 7. Denoising loop
|
501 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
502 |
for i, t in enumerate(timesteps):
|
pipelines/pipeline_infu_flux.py
CHANGED
@@ -12,6 +12,7 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
|
|
15 |
import math
|
16 |
import os
|
17 |
import random
|
@@ -199,9 +200,9 @@ class InfUFluxPipeline:
|
|
199 |
ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
|
200 |
image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
|
201 |
del ipm_state_dict
|
202 |
-
|
203 |
-
|
204 |
-
self.image_proj_model_aes
|
205 |
|
206 |
image_proj_model = Resampler(
|
207 |
dim=1280,
|
@@ -217,9 +218,9 @@ class InfUFluxPipeline:
|
|
217 |
ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
|
218 |
image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
|
219 |
del ipm_state_dict
|
220 |
-
image_proj_model.to('cpu', torch.bfloat16)
|
221 |
-
image_proj_model.eval()
|
222 |
self.image_proj_model_sim = image_proj_model
|
|
|
|
|
223 |
|
224 |
self.image_proj_model = self.image_proj_model_aes
|
225 |
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
+
import copy
|
16 |
import math
|
17 |
import os
|
18 |
import random
|
|
|
200 |
ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
|
201 |
image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
|
202 |
del ipm_state_dict
|
203 |
+
self.image_proj_model_aes = copy.deepcopy(image_proj_model)
|
204 |
+
self.image_proj_model_aes.to('cuda', torch.bfloat16)
|
205 |
+
self.image_proj_model_aes.eval()
|
206 |
|
207 |
image_proj_model = Resampler(
|
208 |
dim=1280,
|
|
|
218 |
ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
|
219 |
image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
|
220 |
del ipm_state_dict
|
|
|
|
|
221 |
self.image_proj_model_sim = image_proj_model
|
222 |
+
self.image_proj_model_sim.to('cpu', torch.bfloat16)
|
223 |
+
self.image_proj_model_sim.eval()
|
224 |
|
225 |
self.image_proj_model = self.image_proj_model_aes
|
226 |
|