initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision import transforms
|
5 |
+
import PIL
|
6 |
+
from PIL import Image
|
7 |
+
import os
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
|
11 |
+
def setup_model(device: torch.device) -> Tuple[torch.nn.Module, int]:
|
12 |
+
image_size = 384
|
13 |
+
model = torch.hub.load('alexsax/omnidata_models', 'surface_normal_dpt_hybrid_384')
|
14 |
+
model.to(device)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
return model, image_size
|
18 |
+
|
19 |
+
def setup_transforms(image_size: int) -> transforms.Compose:
|
20 |
+
return transforms.Compose([
|
21 |
+
transforms.Resize(image_size, interpolation=PIL.Image.BILINEAR),
|
22 |
+
transforms.CenterCrop(image_size),
|
23 |
+
transforms.ToTensor(),
|
24 |
+
])
|
25 |
+
|
26 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
27 |
+
model, image_size = setup_model(device)
|
28 |
+
trans_totensor = setup_transforms(image_size)
|
29 |
+
|
30 |
+
def estimate_surface_normal(input_image: PIL.Image.Image) -> PIL.Image.Image:
|
31 |
+
with torch.no_grad():
|
32 |
+
img_tensor = trans_totensor(input_image)[:3].unsqueeze(0).to(device)
|
33 |
+
|
34 |
+
if img_tensor.shape[1] == 1:
|
35 |
+
img_tensor = img_tensor.repeat_interleave(3, 1)
|
36 |
+
|
37 |
+
output = model(img_tensor).clamp(min=0, max=1)
|
38 |
+
output_image = transforms.ToPILImage()(output[0])
|
39 |
+
|
40 |
+
return output_image
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=estimate_surface_normal,
|
44 |
+
inputs=gr.Image(type="pil"),
|
45 |
+
outputs=gr.Image(type="pil"),
|
46 |
+
title="Monocular Surface Normal Estimation: Omnidata DPT-Hybrid",
|
47 |
+
description="Upload an image to estimate monocular surface normals.",
|
48 |
+
examples=[
|
49 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/test1_rgb.png?raw=true",
|
50 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test2.png?raw=true",
|
51 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test3.png?raw=true",
|
52 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test4.png?raw=true",
|
53 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test5.png?raw=true",
|
54 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test6.png?raw=true",
|
55 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test7.png?raw=true",
|
56 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test8.png?raw=true",
|
57 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test9.png?raw=true",
|
58 |
+
"https://github.com/EPFL-VILAB/omnidata/blob/main/omnidata_tools/torch/assets/demo/test10.png?raw=true",
|
59 |
+
],
|
60 |
+
)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
iface.launch()
|