import os import pickle import torch import random import subprocess import re import pretty_midi import gradio as gr from contextlib import nullcontext from model import GPTConfig, GPT from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter from pedalboard.io import AudioFile import gradio as gr in_space = os.getenv("SYSTEM") == "spaces" temp_dir = 'temp' os.makedirs(temp_dir, exist_ok=True) init_from = 'resume' out_dir = 'checkpoints' ckpt_load = 'model.pt' start = "000000000000\n" num_samples = 1 max_new_tokens = 384 seed = random.randint(1, 100000) torch.manual_seed(seed) device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' compile = False exec(open('configurator.py').read()) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True device_type = 'cpu' if 'cuda' in device else 'cpu' ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) if init_from == 'resume': ckpt_path = os.path.join(out_dir, ckpt_load) checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True) gptconf = GPTConfig(**checkpoint['model_args']) model = GPT(gptconf) state_dict = checkpoint['model'] unwanted_prefix = '_orig_mod.' for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) model.load_state_dict(state_dict) elif init_from.startswith('gpt2'): model = GPT.from_pretrained(init_from, dict(dropout=0.0)) model.eval() model.to(device) if compile: model = torch.compile(model) tokenizer = re.compile(r'000000000000|\d{2}|\n') meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl') with open(meta_path, 'rb') as f: meta = pickle.load(f) stoi = meta.get('stoi', None) itos = meta.get('itos', None) def encode(text): matches = tokenizer.findall(text) return [stoi[c] for c in matches] def decode(encoded): return ''.join([itos[i] for i in encoded]) def clear_midi(dir): for file in os.listdir(dir): if file.endswith('.mid'): os.remove(os.path.join(dir, file)) clear_midi(temp_dir) def generate_midi(temperature, top_k): start_ids = encode(start) x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) midi_events = [] seq_count = 0 with torch.no_grad(): for _ in range(num_samples): sequence = [] y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) tkn_seq = decode(y[0].tolist()) lines = tkn_seq.splitlines() for event in lines: if event.startswith(start.strip()): if sequence: midi_events.append(sequence) sequence = [] seq_count += 1 elif event.strip() == "": continue else: try: p = int(event[0:2]) v = int(event[2:4]) s = int(event[4:8]) e = int(event[8:12]) except ValueError: p, v, s, e = 0, 0, 0, 0 sequence.append({'file_name': f'nanompc_{seq_count:02d}', 'pitch': p, 'velocity': v, 'start': s, 'end': e}) if sequence: midi_events.append(sequence) round_bars = [] for sequence in midi_events: filtered_sequence = [] for event in sequence: if event['start'] < 768 and event['end'] <= 768: filtered_sequence.append(event) if filtered_sequence: round_bars.append(filtered_sequence) midi_events = round_bars return midi_events def write_midi(midi_events, bpm): midi_data = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96) midi_data.time_signature_changes.append(pretty_midi.containers.TimeSignature(4, 4, 0)) instrument = pretty_midi.Instrument(0) midi_data.instruments.append(instrument) for sequence in midi_events: for event in sequence: pitch = event['pitch'] velocity = event['velocity'] start = midi_data.tick_to_time(event['start']) end = midi_data.tick_to_time(event['end']) note = pretty_midi.Note(pitch=pitch, velocity=velocity, start=start, end=end) instrument.notes.append(note) midi_path = os.path.join(temp_dir, 'output.mid') midi_data.write(midi_path) print(f"Generated: {midi_path}") def render_wav(midi_file, uploaded_sf2=None): sf2_dir = 'sf2_kits' audio_format = 's16' sample_rate = '44100' gain = '2.0' if uploaded_sf2: sf2_file = uploaded_sf2 else: sf2_files = [f for f in os.listdir(sf2_dir) if f.endswith('.sf2')] if not sf2_files: raise ValueError("No SoundFont (.sf2) file found in directory.") sf2_file = os.path.join(sf2_dir, random.choice(sf2_files)) print(f"Using SoundFont: {sf2_file}") output_wav = os.path.join(temp_dir, 'output.wav') with open(os.devnull, 'w') as devnull: command = [ 'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate), '-o', f'audio.file.format={audio_format}', '-g', str(gain) ] subprocess.call(command, stdout=devnull, stderr=devnull) return output_wav def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None): midi_events = generate_midi(temperature, top_k) if not midi_events: return "Error generating MIDI.", None, None write_midi(midi_events, bpm) midi_file = os.path.join(temp_dir, 'output.mid') wav_raw = render_wav(midi_file, uploaded_sf2) wav_fx = os.path.join(temp_dir, 'output_fx.wav') sfx_settings = [ { 'board': Pedalboard([ Reverb(room_size=0.01, wet_level=random.uniform(0.005, 0.01), dry_level=0.75, width=1.0), Compressor(threshold_db=-3.0, ratio=8.0, attack_ms=0.0, release_ms=300.0), ]) } ] for setting in sfx_settings: board = setting['board'] with AudioFile(wav_raw) as f: with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o: while f.tell() < f.frames: chunk = f.read(int(f.samplerate)) effected = board(chunk, f.samplerate, reset=False) o.write(effected) return midi_file, wav_fx custom_css = """ #generate-btn { background-color: #6366f1 !important; color: white !important; border: none !important; font-size: 16px; padding: 10px 20px; border-radius: 5px; cursor: pointer; } #generate-btn:hover { background-color: #4f51c5 !important; } """ with gr.Blocks(css=custom_css, theme="soft") as iface: gr.Markdown("

nanoMPC - AI Midi Drum Sequencer

") gr.Markdown("

nanoMPC is a tiny transformer model that generates MIDI drum beats inspired by Lo-Fi, Boom Bap and other styles of Hip Hop.

") with gr.Row(): with gr.Column(scale=1): bpm = gr.Slider(minimum=50, maximum=200, step=1, value=90, label="BPM") temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature") top_k = gr.Slider(minimum=4, maximum=256, step=1, value=128, label="Top-k") soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)") with gr.Column(scale=1): midi_file = gr.File(label="MIDI File Output") audio_file = gr.Audio(label="Generated Audio Output", type="filepath") generate_button = gr.Button("Generate", elem_id="generate-btn") generate_button.click( fn=generate_and_return_files, inputs=[bpm, temperature, top_k, soundfont], outputs=[midi_file, audio_file] ) iface.launch(share=True)