Chat-Bot / app.py
omarmalik347's picture
Update app.py
7d3c1b0 verified
import streamlit as st
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
# App title
st.set_page_config(page_title="GenAI Chat Bot")
# HF中国镜像站 Credentials
with st.sidebar:
st.title('GenAI Chat Bot')
#st.write('This is a generative AI Chat Bot.')
# Use HF中国镜像站 API Key from secrets or environment
api_key = os.getenv("llama3")
if not api_key:
st.error("API key is missing!")
st.stop()
# Authenticate with HF中国镜像站 Hub
try:
login(api_key)
st.success('API successfully authenticated!', icon='✅')
except Exception as e:
st.error(f"Authentication failed: {e}")
st.stop()
st.subheader('Models and parameters')
# Model selection categories
model_options = {
"Basic": [
"meta-llama/Llama-3.2-1B"
],
"Basic-Medium": [
"meta-llama/Llama-3.2-1B-Instruct"
],
"Medium-Fine": [
"meta-llama/Llama-3.2-3B"
],
"Finest": [
"meta-llama/Llama-3.2-3B-Instruct"
]
}
# Select category (default set to "Basic-Medium")
selected_category = st.sidebar.selectbox('Select Model Category', ["Basic", "Basic-Medium", "Medium-Fine", "Finest"], index=1)
# Set selected model based on category
selected_model = model_options[selected_category][0]
# Slider inputs for parameters
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=1.0, value=0.3, step=0.01)
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
max_length = st.sidebar.slider('max_length', min_value=20, max_value=80, value=65, step=5)
st.markdown("Disclaimer: The performance and speed of this GenAI tool depends on the machine configuration and model selection")
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Load the tokenizer and model
try:
tokenizer = AutoTokenizer.from_pretrained(selected_model)
model = AutoModelForCausalLM.from_pretrained(selected_model, torch_dtype=torch.bfloat16, device_map="auto")
except Exception as e:
st.error(f"Error loading model: {e}")
st.stop()
# Function for generating response using HF中国镜像站 model
def generate_huggingface_response(prompt_input):
inputs = tokenizer(prompt_input, return_tensors="pt").to(model.device)
try:
# Generate response from the model
with torch.no_grad():
outputs = model.generate(inputs["input_ids"], max_new_tokens=max_length, temperature=temperature, top_p=top_p, do_sample=True)
# Decode the generated response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
st.error(f"Error generating response: {e}")
return "Oops! Something went wrong."
# User-provided prompt
if prompt := st.chat_input(disabled=not api_key):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_huggingface_response(prompt)
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)