Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from reportlab.lib.pagesizes import A4
|
|
9 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
10 |
from reportlab.platypus import SimpleDocTemplate, Paragraph
|
11 |
from reportlab.lib.enums import TA_JUSTIFY
|
|
|
12 |
|
13 |
# Initialize the summarization pipeline
|
14 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
@@ -19,68 +20,54 @@ st.set_page_config(layout="wide")
|
|
19 |
|
20 |
# Function to create PDF with justified text
|
21 |
def create_pdf(text):
|
22 |
-
# Create a BytesIO buffer to avoid saving the PDF to disk
|
23 |
pdf_buffer = BytesIO()
|
24 |
-
|
25 |
-
# Define the PDF document layout and page size
|
26 |
doc = SimpleDocTemplate(pdf_buffer, pagesize=A4)
|
27 |
-
|
28 |
-
# Define a style for justified text
|
29 |
styles = getSampleStyleSheet()
|
30 |
justified_style = ParagraphStyle(
|
31 |
name="JustifiedStyle",
|
32 |
parent=styles["BodyText"],
|
33 |
alignment=TA_JUSTIFY,
|
34 |
fontSize=12,
|
35 |
-
leading=15
|
36 |
)
|
37 |
-
|
38 |
-
# Create a Paragraph object with justified text
|
39 |
paragraph = Paragraph(text, justified_style)
|
40 |
-
|
41 |
-
# Build the PDF in the buffer
|
42 |
-
elements = [paragraph]
|
43 |
-
doc.build(elements)
|
44 |
-
|
45 |
-
# Move the buffer to the beginning so Streamlit can read it
|
46 |
pdf_buffer.seek(0)
|
47 |
return pdf_buffer
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Main application
|
51 |
def main():
|
52 |
-
st.title("Article Extractor and Summarizer")
|
53 |
-
|
54 |
-
# Get URL from the user
|
55 |
-
url = st.text_input("Share an article URL:", key="url")
|
56 |
|
57 |
-
|
58 |
max_chunk = 300
|
59 |
|
60 |
if url:
|
61 |
try:
|
62 |
-
# Fetch and parse the article
|
63 |
response = requests.get(url)
|
64 |
response.encoding = 'utf-8'
|
65 |
soup = BeautifulSoup(response.text, 'html.parser')
|
66 |
results = soup.find_all(['h1', 'p'])
|
67 |
-
|
68 |
-
# Clean and concatenate text
|
69 |
text = [html.unescape(result.get_text()) for result in results]
|
70 |
article = ' '.join(text)
|
71 |
|
72 |
-
# Display the extracted article text in a scrollable window
|
73 |
st.subheader("Extracted Article Content")
|
74 |
st.text_area("Article", article, height=300)
|
75 |
st.markdown(f"**Article Length:** {len(article)} characters")
|
76 |
|
77 |
-
# Preprocess text for chunking
|
78 |
article = article.replace('.', '.<eos>').replace('?', '?<eos>').replace('!', '!<eos>')
|
79 |
sentences = article.split('<eos>')
|
80 |
current_chunk = 0
|
81 |
chunks = [[]]
|
82 |
|
83 |
-
# Split text into manageable chunks
|
84 |
for sentence in sentences:
|
85 |
if len(chunks[current_chunk]) + len(sentence.split(' ')) <= max_chunk:
|
86 |
chunks[current_chunk].extend(sentence.split(' '))
|
@@ -88,69 +75,62 @@ def main():
|
|
88 |
current_chunk += 1
|
89 |
chunks.append(sentence.split(' '))
|
90 |
|
91 |
-
# Join words back to form full sentences for each chunk
|
92 |
for chunk_id in range(len(chunks)):
|
93 |
chunks[chunk_id] = ' '.join(chunks[chunk_id])
|
94 |
|
95 |
-
# Streamlit progress bar, dynamic status display, and summaries list
|
96 |
progress_bar = st.progress(0)
|
97 |
-
status_text = st.empty()
|
98 |
summaries = []
|
99 |
start_time = time.time()
|
100 |
|
101 |
-
# Summarize each chunk and update progress
|
102 |
for i, chunk in enumerate(chunks):
|
103 |
summary = summarizer(chunk, max_length=120, min_length=30, do_sample=False)
|
104 |
summaries.append(summary[0]['summary_text'])
|
105 |
|
106 |
-
# Calculate and display percentage completed and estimated time
|
107 |
percent_complete = (i + 1) / len(chunks)
|
108 |
elapsed_time = time.time() - start_time
|
109 |
estimated_total_time = elapsed_time / percent_complete
|
110 |
estimated_time_remaining = estimated_total_time - elapsed_time
|
111 |
|
112 |
-
# Update progress bar and status text
|
113 |
progress_bar.progress(percent_complete)
|
114 |
status_text.markdown(f"**Progress:** {percent_complete * 100:.2f}% - "
|
115 |
f"**Estimated time remaining:** {estimated_time_remaining:.2f} seconds")
|
116 |
|
117 |
-
# Combine summaries into a single text output
|
118 |
summary_text = ' '.join(summaries)
|
119 |
|
120 |
-
# Display the summarized text
|
121 |
st.subheader("Summarized Article Content")
|
122 |
st.text_area("Summary", summary_text, height=300)
|
123 |
st.markdown(f"**Summary Length:** {len(summary_text)} characters")
|
124 |
|
125 |
-
# Create the PDF from the summary text with justified alignment and wrapping
|
126 |
pdf_buffer = create_pdf(summary_text)
|
127 |
|
128 |
-
#
|
129 |
-
st.download_button(
|
130 |
-
label="Download Summary as PDF",
|
131 |
-
data=pdf_buffer,
|
132 |
-
file_name="summarized_article.pdf",
|
133 |
-
mime="application/pdf"
|
134 |
-
)
|
135 |
-
|
136 |
-
# Display the compression ratio
|
137 |
original_length = len(article.split())
|
138 |
summary_length = len(summary_text.split())
|
139 |
compression_ratio = (summary_length / original_length) * 100
|
140 |
|
141 |
-
|
142 |
if compression_ratio < 20:
|
143 |
-
st.success(
|
144 |
-
f"{round(compression_ratio)}% Great Compression!\nThe summary is succinct and effectively "
|
145 |
-
f"highlights key points.")
|
146 |
elif 20 <= compression_ratio <= 40:
|
147 |
-
st.info(
|
148 |
-
f"{round(compression_ratio)}% Well-balanced Summary.\nIt maintains essential details while being "
|
149 |
-
f"brief.")
|
150 |
else:
|
151 |
-
st.warning(
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
except Exception as e:
|
156 |
st.warning(f"Error: {e}")
|
|
|
9 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
10 |
from reportlab.platypus import SimpleDocTemplate, Paragraph
|
11 |
from reportlab.lib.enums import TA_JUSTIFY
|
12 |
+
import pyttsx3
|
13 |
|
14 |
# Initialize the summarization pipeline
|
15 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
|
20 |
|
21 |
# Function to create PDF with justified text
|
22 |
def create_pdf(text):
|
|
|
23 |
pdf_buffer = BytesIO()
|
|
|
|
|
24 |
doc = SimpleDocTemplate(pdf_buffer, pagesize=A4)
|
|
|
|
|
25 |
styles = getSampleStyleSheet()
|
26 |
justified_style = ParagraphStyle(
|
27 |
name="JustifiedStyle",
|
28 |
parent=styles["BodyText"],
|
29 |
alignment=TA_JUSTIFY,
|
30 |
fontSize=12,
|
31 |
+
leading=15
|
32 |
)
|
|
|
|
|
33 |
paragraph = Paragraph(text, justified_style)
|
34 |
+
doc.build([paragraph])
|
|
|
|
|
|
|
|
|
|
|
35 |
pdf_buffer.seek(0)
|
36 |
return pdf_buffer
|
37 |
|
38 |
|
39 |
+
# Function to read aloud the summary
|
40 |
+
def read_aloud(text):
|
41 |
+
engine = pyttsx3.init()
|
42 |
+
engine.say(text)
|
43 |
+
engine.runAndWait()
|
44 |
+
|
45 |
+
|
46 |
# Main application
|
47 |
def main():
|
48 |
+
st.title("Enhanced Article Extractor and Summarizer")
|
|
|
|
|
|
|
49 |
|
50 |
+
url = st.text_input("Enter the URL of an article:", key="url")
|
51 |
max_chunk = 300
|
52 |
|
53 |
if url:
|
54 |
try:
|
|
|
55 |
response = requests.get(url)
|
56 |
response.encoding = 'utf-8'
|
57 |
soup = BeautifulSoup(response.text, 'html.parser')
|
58 |
results = soup.find_all(['h1', 'p'])
|
|
|
|
|
59 |
text = [html.unescape(result.get_text()) for result in results]
|
60 |
article = ' '.join(text)
|
61 |
|
|
|
62 |
st.subheader("Extracted Article Content")
|
63 |
st.text_area("Article", article, height=300)
|
64 |
st.markdown(f"**Article Length:** {len(article)} characters")
|
65 |
|
|
|
66 |
article = article.replace('.', '.<eos>').replace('?', '?<eos>').replace('!', '!<eos>')
|
67 |
sentences = article.split('<eos>')
|
68 |
current_chunk = 0
|
69 |
chunks = [[]]
|
70 |
|
|
|
71 |
for sentence in sentences:
|
72 |
if len(chunks[current_chunk]) + len(sentence.split(' ')) <= max_chunk:
|
73 |
chunks[current_chunk].extend(sentence.split(' '))
|
|
|
75 |
current_chunk += 1
|
76 |
chunks.append(sentence.split(' '))
|
77 |
|
|
|
78 |
for chunk_id in range(len(chunks)):
|
79 |
chunks[chunk_id] = ' '.join(chunks[chunk_id])
|
80 |
|
|
|
81 |
progress_bar = st.progress(0)
|
82 |
+
status_text = st.empty()
|
83 |
summaries = []
|
84 |
start_time = time.time()
|
85 |
|
|
|
86 |
for i, chunk in enumerate(chunks):
|
87 |
summary = summarizer(chunk, max_length=120, min_length=30, do_sample=False)
|
88 |
summaries.append(summary[0]['summary_text'])
|
89 |
|
|
|
90 |
percent_complete = (i + 1) / len(chunks)
|
91 |
elapsed_time = time.time() - start_time
|
92 |
estimated_total_time = elapsed_time / percent_complete
|
93 |
estimated_time_remaining = estimated_total_time - elapsed_time
|
94 |
|
|
|
95 |
progress_bar.progress(percent_complete)
|
96 |
status_text.markdown(f"**Progress:** {percent_complete * 100:.2f}% - "
|
97 |
f"**Estimated time remaining:** {estimated_time_remaining:.2f} seconds")
|
98 |
|
|
|
99 |
summary_text = ' '.join(summaries)
|
100 |
|
|
|
101 |
st.subheader("Summarized Article Content")
|
102 |
st.text_area("Summary", summary_text, height=300)
|
103 |
st.markdown(f"**Summary Length:** {len(summary_text)} characters")
|
104 |
|
|
|
105 |
pdf_buffer = create_pdf(summary_text)
|
106 |
|
107 |
+
# Compression Ratio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
original_length = len(article.split())
|
109 |
summary_length = len(summary_text.split())
|
110 |
compression_ratio = (summary_length / original_length) * 100
|
111 |
|
112 |
+
st.markdown(f"### Compression Ratio: {round(compression_ratio)}%")
|
113 |
if compression_ratio < 20:
|
114 |
+
st.success(f"Great Compression!\nThe summary is succinct and effectively highlights key points.")
|
|
|
|
|
115 |
elif 20 <= compression_ratio <= 40:
|
116 |
+
st.info(f"Well-balanced Summary.\nIt maintains essential details while being brief.")
|
|
|
|
|
117 |
else:
|
118 |
+
st.warning(f"Compression may be excessive.\nThe summary could be too brief and miss important details.")
|
119 |
+
|
120 |
+
# Display buttons in columns
|
121 |
+
col1, col2 = st.columns([1, 1])
|
122 |
+
|
123 |
+
with col1:
|
124 |
+
st.download_button(
|
125 |
+
label="Download Summary as PDF",
|
126 |
+
data=pdf_buffer,
|
127 |
+
file_name="summarized_article.pdf",
|
128 |
+
mime="application/pdf"
|
129 |
+
)
|
130 |
+
|
131 |
+
with col2:
|
132 |
+
if st.button("Read Aloud Summary"):
|
133 |
+
read_aloud(summary_text)
|
134 |
|
135 |
except Exception as e:
|
136 |
st.warning(f"Error: {e}")
|