Spaces:
Running
Running
File size: 13,168 Bytes
b91b109 9f4801c b2c7cca 9f4801c bc1f905 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b91b109 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 16f43b0 b91b109 b2c7cca 9f4801c bc1f905 9f4801c bc1f905 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c bc1f905 9f4801c 16f43b0 9f4801c b2c7cca 9f4801c b91b109 16f43b0 b91b109 b2c7cca b91b109 9f4801c b2c7cca 9f4801c b2c7cca 9f4801c bc1f905 9f4801c bc1f905 b91b109 bc1f905 9f4801c bc1f905 9f4801c bc1f905 9f4801c bc1f905 9f4801c b2c7cca 9f4801c bc1f905 9f4801c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import traceback
import os
import json
import pathlib
import gpxpy
import numpy as np
import pandas as pd
import gradio as gr
from datetime import datetime
import pytz
from sunrisesunset import SunriseSunset
from timezonefinder import TimezoneFinder
tf = TimezoneFinder()
from beaufort_scale.beaufort_scale import beaufort_scale_kmh
import srtm
elevation_data = srtm.get_data()
import openmeteo_requests
import requests_cache
from retry_requests import retry
from geopy import distance
from geopy.geocoders import Nominatim
geolocator = Nominatim(user_agent='FreeLetzWeather')
from apscheduler.schedulers.background import BackgroundScheduler
### Default variables ###
# Setup the Open-Meteo API client with cache and retry on error
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)
# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
'timezone': 'auto',
'hourly': ['temperature_2m', 'rain', 'wind_speed_10m', 'weather_code', 'is_day']
}
# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'
# Custom CSS
css = '''
#button {background: DarkGoldenrod;}
.buttons {color: white;}
#table {height: 1080px;}
.tables {height: 1080px;}
.required-dropdown input:focus {
color: white;
background-color: DarkGoldenrod;
box-shadow: 0 0 0 12px DarkGoldenrod;
}
'''
# Default GPX if none is uploaded
gpx_file = os.path.join(os.getcwd(), 'default_gpx.gpx')
gpx_path = pathlib.Path(gpx_file)
### Functions ###
with open('weather_icons_custom.json', 'r') as file:
icons = json.load(file)
def add_ele(x):
return elevation_data.get_elevation(x['latitude'], x['longitude'], 0)
def map_icons(df):
code = df['weather_code']
if df['is_day'] == 1:
icon = icons[str(code)]['day']['icon']
description = icons[str(code)]['day']['description']
elif df['is_day'] == 0:
icon = icons[str(code)]['night']['icon']
description = icons[str(code)]['night']['description']
df['Weather'] = '<img style="float: left; padding: 0; margin: -6px; display: block;" width=32px; src=' + icon_url + icon + '>'
df['Weather outline'] = description
return df
# Pluviometry to natural language
def rain_intensity(precipt):
if precipt >= 50:
rain = 'Extreme rain'
elif 50 < precipt <= 16:
rain = 'Very heavy rain'
elif 4 <= precipt < 16:
rain = 'Heavy rain'
elif 1 <= precipt < 4:
rain = 'Moderate rain'
elif 0.25 <= precipt < 1:
rain = 'Light rain'
elif 0 < precipt < 0.25:
rain = 'Light drizzle'
else:
rain = ''
return rain
def gen_dates_list():
global day_print
global dates_filt
global dates_dict
global dates_list
global day_read
global today
today = datetime.today()
day_read = today.strftime('%A %-d %B')
day_print = '<h2>' + day_read + '</h2>'
dates_aval = pd.date_range(datetime.today(), periods=7).to_pydatetime().tolist()
dates_read = [x.strftime('%A %-d %B %Y') for x in dates_aval]
dates_filt = [x.strftime('%Y-%m-%d') for x in dates_aval]
dates_dict = dict(zip(dates_read, dates_filt))
dates_list = list(dates_dict.keys())
return dates_list
def sunrise_sunset(lat, lon, day):
tz = tf.timezone_at(lng=lon, lat=lat)
zone = pytz.timezone(tz)
dt = day.astimezone(zone)
rs = SunriseSunset(dt, lat=lat, lon=lon, zenith='official')
rise_time, set_time = rs.sun_rise_set
sunrise = rise_time.strftime('%H:%M')
sunset = set_time.strftime('%H:%M')
sunrise_icon = '<img style="float: left;" width="32px" src=' + icon_url + 'sunrise.svg>'
sunset_icon = '<img style="float: left;" width="32px" src=' + icon_url + 'sunset.svg>'
sunrise = '<h6>' + sunrise_icon + ' Sunrise ' + sunrise + '</h6>'
sunset = '<h6>' + sunset_icon + ' Sunset ' + sunset + '</h6>'
return sunrise, sunset
# Download the JSON and filter it per date
def json_parser(date):
global dfs
responses = openmeteo.weather_api(url, params=params)
# Process first location. Add a for-loop for multiple locations or weather models
response = responses[0]
# Process hourly data. The order of variables needs to be the same as requested.
hourly = response.Hourly()
hourly_temperature_2m = hourly.Variables(0).ValuesAsNumpy()
rain = hourly.Variables(1).ValuesAsNumpy()
hourly_wind_speed_10m = hourly.Variables(2).ValuesAsNumpy()
weather_code = hourly.Variables(3).ValuesAsNumpy()
is_day = hourly.Variables(4).ValuesAsNumpy()
hourly_data = {'date': pd.date_range(
start = pd.to_datetime(hourly.Time(), unit = 's', utc = True),
end = pd.to_datetime(hourly.TimeEnd(), unit = 's', utc = True),
freq = pd.Timedelta(seconds = hourly.Interval()),
inclusive = 'left'
)}
hourly_data['Temp (°C)'] = hourly_temperature_2m.round(0).astype(int)
hourly_data['weather_code'] = weather_code.astype(int)
hourly_data['is_day'] = is_day.astype(int)
v_rain_intensity = np.vectorize(rain_intensity)
hourly_data['Rain level'] = v_rain_intensity(rain)
v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)
hourly_data['Wind level'] = v_beaufort_scale_kmh(hourly_wind_speed_10m, language='en')
hourly_data['Rain (mm/h)'] = rain.round(1)
hourly_data['Wind (km/h)'] = hourly_wind_speed_10m.round(1)
hourly_dataframe = pd.DataFrame(data = hourly_data)
hourly_dataframe['Temp (°C)'] = hourly_dataframe['Temp (°C)'].astype(str) + '°'
hourly_dataframe['Wind (km/h)'] = hourly_dataframe['Wind (km/h)'].astype(str).replace('0.0', '')
hourly_dataframe['Rain (mm/h)'] = hourly_dataframe['Rain (mm/h)'].astype(str).replace('0.0', '')
hourly_dataframe['Time'] = hourly_dataframe['date'].dt.hour.astype(str).str.zfill(2)
hourly_dataframe = hourly_dataframe.apply(map_icons, axis=1)
dfs = hourly_dataframe[hourly_dataframe['date'].dt.strftime('%Y-%m-%d') == date]
dfs = dfs[['Time', 'Weather', 'Weather outline', 'Temp (°C)', 'Rain (mm/h)', 'Rain level', 'Wind (km/h)', 'Wind level']]
dfs = dfs.style.set_properties(**{'border': '0px'})
return dfs
# Extract coordinates and location from GPX file
def coor_gpx(gpx):
def parse_gpx(gpx):
global gpx_name
global params
global lat
global lon
global altitude
global location
global dates_dict
global dates_list
global day_read
global dates
global sunrise
global sunset
with open(gpx) as f:
gpx_parsed = gpxpy.parse(f)
# Convert to a dataframe one point at a time.
points = []
for track in gpx_parsed.tracks:
for segment in track.segments:
for p in segment.points:
points.append({
'latitude': p.latitude,
'longitude': p.longitude,
'elevation': p.elevation,
})
df_gpx = pd.DataFrame.from_records(points)
#gpx_dict = df_gpx.iloc[-1].to_dict()
df_gpx['srtm'] = df_gpx.apply(lambda x: add_ele(x), axis=1)
# Distance estimation function
def eukarney(lat1, lon1, alt1, lat2, lon2, alt2):
p1 = (lat1, lon1)
p2 = (lat2, lon2)
karney = distance.distance(p1, p2).m
return np.sqrt(karney**2 + (alt2 - alt1)**2)
# Create shifted columns in order to facilitate distance calculation
df_gpx['lat_shift'] = df_gpx['latitude'].shift(periods=-1).fillna(df_gpx['latitude'])
df_gpx['lon_shift'] = df_gpx['longitude'].shift(periods=-1).fillna(df_gpx['longitude'])
df_gpx['alt_shift'] = df_gpx['srtm'].shift(periods=-1).fillna(df_gpx['srtm'])
# Apply the distance function to the dataframe
df_gpx['distances'] = df_gpx.apply(lambda x: eukarney(x['latitude'], x['longitude'], x['srtm'], x['lat_shift'], x['lon_shift'], x['alt_shift']), axis=1).fillna(0)
df_gpx['distance'] = df_gpx['distances'].cumsum().round(decimals = 0).astype(int)
gpx_dict = df_gpx.iloc[(df_gpx.distance - df_gpx.distance.median()).abs().argsort()[:1]].to_dict('records')[0]
params['latitude'] = gpx_dict['latitude']
params['longitude'] = gpx_dict['longitude']
params['elevation'] = gpx_dict['elevation']
lat = params['latitude']
lon = params['longitude']
if params['elevation'] == None:
params['elevation'] = int(round(gpx_dict['srtm'], 0))
else:
params['elevation'] = int(round(params['elevation'], 0))
altitude = params['elevation']
location = geolocator.reverse('{}, {}'.format(lat, lon), zoom=14)
gpx_name = 'You have uploaded <b style="color: #004170;">' + os.path.basename(gpx.name) + '</b>'
location = '<p style="color: #004170">' + str(location) + '</p>'
dates_list = gen_dates_list()
day_read = dates_list[0]
date_filt = datetime.strptime(day_read, '%A %d %B %Y')
date_filt = date_filt.strftime('%Y-%m-%d')
day_print = '<h2>' + day_read + '</h2>'
sunrise, sunset = sunrise_sunset(lat, lon, datetime.strptime(day_read, '%A %d %B %Y'))
dates = gr.Dropdown(choices=dates_list, label='2. Next, pick up the date of your hike', value=dates_list[0], interactive=True, elem_classes='required-dropdown')
dfs = json_parser(date_filt)
try:
parse_gpx(gpx)
except Exception as error:
traceback.print_exc()
parse_gpx(gpx_path)
global gpx_name
gpx_name = '<b style="color: firebrick;">ERROR: Not a valid GPX file. Upload another file.</b>'
return gpx_name, location, dates, day_print, sunrise, sunset, dfs
# Choose a date from the dropdown menu
def date_chooser(day):
global day_read
global sunrise
global sunset
global sunrise_icon
global sunset_icon
global dates_dict
global dates_list
dates_list = gen_dates_list()
day_read = day
day_print = '<h2>' + day_read + '</h2>'
date = datetime.strptime(day, '%A %d %B %Y')
index = dates_list.index(day)
sunrise, sunset = sunrise_sunset(lat, lon, date)
date_filt = date.strftime('%Y-%m-%d')
dfs = json_parser(date_filt)
dates = gr.Dropdown(choices=dates_list, label='2. Next, pick up the date of your hike', value=dates_list[index], interactive=True, elem_classes='required-dropdown')
return day_print, sunrise, sunset, dfs, dates
# Call functions with default values
coor_gpx(gpx_path)
sunrise, sunset = sunrise_sunset(lat, lon, today)
dfs = json_parser(dates_filt[0])
### Gradio app ###
with gr.Blocks(theme='ParityError/Interstellar', css=css, fill_height=True) as demo:
with gr.Column():
with gr.Row():
gr.HTML('<h1 style="color: DarkGoldenrod">Freedom Luxembourg<br><h3 style="color: #004170">The Weather for Hikers</h3></h1>')
with gr.Column():
upload_gpx = gr.UploadButton(label='1. Upload your GPX track', file_count='single', size='lg', file_types=['.gpx', '.GPX'], elem_id='button', elem_classes='buttons', interactive=True)
file_name = gr.HTML('<h6>' + gpx_name + '</h6>')
dates = gr.Dropdown(choices=gen_dates_list(), label='2. Pick up the date of your hike', value=dates_list[0], interactive=True, elem_classes='required-dropdown')
gr.HTML('<h1><br></h1>')
with gr.Row():
choosen_date = gr.HTML(day_print)
loc = gr.HTML('<p style="color: #004170">' + str(location) + '</p>')
sunrise = gr.HTML(sunrise)
sunset = gr.HTML(sunset)
table = gr.DataFrame(dfs, max_height=1000, type='pandas', headers=None, line_breaks=False, interactive=False, wrap=True, visible=True, render=True,
elem_id='table', elem_classes='tables',
datatype=['str', 'html', 'str', 'str', 'str', 'str', 'str', 'str'],
)
gr.HTML('<center>Freedom Luxembourg<br><a style="color: DarkGoldenrod; font-style: italic; text-decoration: none" href="https://www.freeletz.lu/freeletz/" target="_blank">freeletz.lu</a></center>')
gr.HTML('<center>Powered by <a style="color: #004170; text-decoration: none" href="https://open-meteo.com/" target="_blank">Open Meteo</a></center>')
upload_gpx.upload(fn=coor_gpx, inputs=upload_gpx, outputs=[file_name, loc, dates, choosen_date, sunrise, sunset, table])
dates.input(fn=date_chooser, inputs=dates, outputs=[choosen_date, sunrise, sunset, table, dates])
def restart_app():
demo.close()
port = int(os.environ.get('PORT', 7860))
demo.launch(server_name="0.0.0.0", server_port=port)
scheduler = BackgroundScheduler({'apscheduler.timezone': 'Europe/Luxembourg'})
scheduler.add_job(func=restart_app, trigger='cron', hour='05', minute='55')
scheduler.start()
port = int(os.environ.get('PORT', 7860))
demo.launch(server_name="0.0.0.0", server_port=port)
|