File size: 13,168 Bytes
b91b109
 
9f4801c
 
 
 
b2c7cca
9f4801c
 
bc1f905
9f4801c
 
 
 
 
b2c7cca
9f4801c
 
 
 
b2c7cca
 
 
 
9f4801c
b91b109
9f4801c
 
 
 
 
 
 
b2c7cca
 
 
 
 
 
 
 
 
 
 
9f4801c
 
b2c7cca
9f4801c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7cca
 
 
16f43b0
 
b91b109
b2c7cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4801c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1f905
9f4801c
 
 
 
 
 
 
 
bc1f905
9f4801c
b2c7cca
9f4801c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7cca
 
9f4801c
 
 
 
 
 
 
 
 
 
 
b2c7cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4801c
b2c7cca
 
 
9f4801c
b2c7cca
 
9f4801c
b2c7cca
9f4801c
b2c7cca
9f4801c
b2c7cca
 
9f4801c
b2c7cca
9f4801c
b2c7cca
 
 
 
 
 
 
 
 
 
 
 
9f4801c
 
 
 
 
 
bc1f905
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4801c
16f43b0
9f4801c
 
 
 
 
 
 
b2c7cca
 
 
9f4801c
 
b91b109
16f43b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91b109
b2c7cca
 
 
 
 
 
 
b91b109
9f4801c
b2c7cca
9f4801c
b2c7cca
9f4801c
 
 
 
 
 
bc1f905
 
 
 
 
 
9f4801c
 
 
 
 
 
bc1f905
 
b91b109
 
bc1f905
 
9f4801c
 
bc1f905
9f4801c
 
 
 
 
 
 
 
 
 
 
bc1f905
9f4801c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1f905
 
 
 
 
9f4801c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7cca
9f4801c
 
 
 
 
 
 
 
 
bc1f905
9f4801c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import traceback

import os
import json
import pathlib
import gpxpy
import numpy as np
import pandas as pd
import gradio as gr
from datetime import datetime

import pytz
from sunrisesunset import SunriseSunset
from timezonefinder import TimezoneFinder
tf = TimezoneFinder()
from beaufort_scale.beaufort_scale import beaufort_scale_kmh

import srtm
elevation_data = srtm.get_data()

import openmeteo_requests

import requests_cache
from retry_requests import retry

from geopy import distance
from geopy.geocoders import Nominatim
geolocator = Nominatim(user_agent='FreeLetzWeather')

from apscheduler.schedulers.background import BackgroundScheduler

### Default variables ###

# Setup the Open-Meteo API client with cache and retry on error
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)

# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
	'timezone': 'auto',
	'hourly': ['temperature_2m', 'rain', 'wind_speed_10m', 'weather_code', 'is_day']
}

# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'

# Custom CSS
css = '''
#button {background: DarkGoldenrod;}
.buttons {color: white;}
#table {height: 1080px;}
.tables {height: 1080px;}

.required-dropdown input:focus {
    color: white;
    background-color: DarkGoldenrod;
    box-shadow: 0 0 0 12px DarkGoldenrod;
}
'''

# Default GPX if none is uploaded
gpx_file = os.path.join(os.getcwd(), 'default_gpx.gpx')
gpx_path = pathlib.Path(gpx_file)


### Functions ###

with open('weather_icons_custom.json', 'r') as file:
	icons = json.load(file)

def add_ele(x):
    return elevation_data.get_elevation(x['latitude'], x['longitude'], 0)

def map_icons(df):

	code = df['weather_code']

	if df['is_day'] == 1:
		icon = icons[str(code)]['day']['icon']
		description = icons[str(code)]['day']['description']
	elif df['is_day'] == 0:
		icon = icons[str(code)]['night']['icon']
		description = icons[str(code)]['night']['description']

	df['Weather'] = '<img style="float: left; padding: 0; margin: -6px; display: block;" width=32px; src=' + icon_url + icon + '>'
	df['Weather outline'] = description

	return df

# Pluviometry to natural language
def rain_intensity(precipt):
    if precipt >= 50:
        rain = 'Extreme rain'
    elif 50  < precipt <= 16:
        rain = 'Very heavy rain'
    elif 4  <= precipt < 16:
        rain = 'Heavy rain'
    elif 1  <= precipt < 4:
        rain = 'Moderate rain'
    elif 0.25  <= precipt < 1:
        rain = 'Light rain'
    elif 0 < precipt < 0.25:
        rain = 'Light drizzle'
    else:
        rain = ''
    return rain

def gen_dates_list():

    global day_print
    global dates_filt
    global dates_dict
    global dates_list
    global day_read
    global today

    today = datetime.today()
    day_read = today.strftime('%A %-d %B')
    day_print = '<h2>' + day_read + '</h2>'

    dates_aval = pd.date_range(datetime.today(), periods=7).to_pydatetime().tolist()

    dates_read = [x.strftime('%A %-d %B %Y') for x in dates_aval]
    dates_filt = [x.strftime('%Y-%m-%d') for x in dates_aval]


    dates_dict = dict(zip(dates_read, dates_filt))
    dates_list = list(dates_dict.keys())

    return dates_list

def sunrise_sunset(lat, lon, day):

    tz = tf.timezone_at(lng=lon, lat=lat)
    zone = pytz.timezone(tz)

    dt = day.astimezone(zone)

    rs = SunriseSunset(dt, lat=lat, lon=lon, zenith='official')
    rise_time, set_time = rs.sun_rise_set

    sunrise = rise_time.strftime('%H:%M')
    sunset = set_time.strftime('%H:%M')

    sunrise_icon = '<img style="float: left;" width="32px" src=' + icon_url + 'sunrise.svg>'
    sunset_icon = '<img style="float: left;" width="32px" src=' + icon_url + 'sunset.svg>'

    sunrise = '<h6>' + sunrise_icon  + ' Sunrise ' + sunrise + '</h6>'
    sunset = '<h6>' + sunset_icon + ' Sunset ' + sunset + '</h6>'

    return sunrise, sunset

# Download the JSON and filter it per date
def json_parser(date):

    global dfs

    responses = openmeteo.weather_api(url, params=params)

    # Process first location. Add a for-loop for multiple locations or weather models
    response = responses[0]

    # Process hourly data. The order of variables needs to be the same as requested.
    hourly = response.Hourly()

    hourly_temperature_2m = hourly.Variables(0).ValuesAsNumpy()
    rain = hourly.Variables(1).ValuesAsNumpy()
    hourly_wind_speed_10m = hourly.Variables(2).ValuesAsNumpy()
    weather_code = hourly.Variables(3).ValuesAsNumpy()
    is_day = hourly.Variables(4).ValuesAsNumpy()

    hourly_data = {'date': pd.date_range(
        start = pd.to_datetime(hourly.Time(), unit = 's', utc = True),
        end = pd.to_datetime(hourly.TimeEnd(), unit = 's', utc = True),
        freq = pd.Timedelta(seconds = hourly.Interval()),
        inclusive = 'left'
    )}

    hourly_data['Temp (°C)'] = hourly_temperature_2m.round(0).astype(int)
    hourly_data['weather_code'] = weather_code.astype(int)
    hourly_data['is_day'] = is_day.astype(int)

    v_rain_intensity = np.vectorize(rain_intensity)
    hourly_data['Rain level'] = v_rain_intensity(rain)

    v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)

    hourly_data['Wind level'] = v_beaufort_scale_kmh(hourly_wind_speed_10m, language='en')

    hourly_data['Rain (mm/h)'] = rain.round(1)
    hourly_data['Wind (km/h)'] = hourly_wind_speed_10m.round(1)

    hourly_dataframe = pd.DataFrame(data = hourly_data)

    hourly_dataframe['Temp (°C)'] = hourly_dataframe['Temp (°C)'].astype(str) + '°'
    hourly_dataframe['Wind (km/h)'] = hourly_dataframe['Wind (km/h)'].astype(str).replace('0.0', '')
    hourly_dataframe['Rain (mm/h)'] = hourly_dataframe['Rain (mm/h)'].astype(str).replace('0.0', '')
    hourly_dataframe['Time'] = hourly_dataframe['date'].dt.hour.astype(str).str.zfill(2)

    hourly_dataframe = hourly_dataframe.apply(map_icons, axis=1)

    dfs = hourly_dataframe[hourly_dataframe['date'].dt.strftime('%Y-%m-%d') == date]

    dfs = dfs[['Time', 'Weather', 'Weather outline', 'Temp (°C)', 'Rain (mm/h)', 'Rain level', 'Wind (km/h)', 'Wind level']]

    dfs = dfs.style.set_properties(**{'border': '0px'})

    return dfs

# Extract coordinates and location from GPX file
def coor_gpx(gpx):

    def parse_gpx(gpx):

        global gpx_name
        global params
        global lat
        global lon
        global altitude
        global location
        global dates_dict
        global dates_list
        global day_read
        global dates
        global sunrise
        global sunset

        with open(gpx) as f:
            gpx_parsed = gpxpy.parse(f)
        # Convert to a dataframe one point at a time.
        points = []
        for track in gpx_parsed.tracks:
            for segment in track.segments:
                for p in segment.points:
                    points.append({
                        'latitude': p.latitude,
                        'longitude': p.longitude,
                        'elevation': p.elevation,
                })
        df_gpx = pd.DataFrame.from_records(points)
        #gpx_dict = df_gpx.iloc[-1].to_dict()

        df_gpx['srtm'] = df_gpx.apply(lambda x: add_ele(x), axis=1)

        # Distance estimation function

        def eukarney(lat1, lon1, alt1, lat2, lon2, alt2):
            p1 = (lat1, lon1)
            p2 = (lat2, lon2)
            karney = distance.distance(p1, p2).m
            return np.sqrt(karney**2 + (alt2 - alt1)**2)

        # Create shifted columns in order to facilitate distance calculation

        df_gpx['lat_shift'] = df_gpx['latitude'].shift(periods=-1).fillna(df_gpx['latitude'])
        df_gpx['lon_shift'] = df_gpx['longitude'].shift(periods=-1).fillna(df_gpx['longitude'])
        df_gpx['alt_shift'] = df_gpx['srtm'].shift(periods=-1).fillna(df_gpx['srtm'])

        # Apply the distance function to the dataframe

        df_gpx['distances'] = df_gpx.apply(lambda x: eukarney(x['latitude'], x['longitude'], x['srtm'], x['lat_shift'], x['lon_shift'], x['alt_shift']), axis=1).fillna(0)
        df_gpx['distance'] = df_gpx['distances'].cumsum().round(decimals = 0).astype(int)

        gpx_dict = df_gpx.iloc[(df_gpx.distance - df_gpx.distance.median()).abs().argsort()[:1]].to_dict('records')[0]

        params['latitude'] = gpx_dict['latitude']
        params['longitude'] = gpx_dict['longitude']
        params['elevation'] = gpx_dict['elevation']
        lat = params['latitude']
        lon = params['longitude']

        if params['elevation'] == None:
            params['elevation'] = int(round(gpx_dict['srtm'], 0))
        else:
            params['elevation'] = int(round(params['elevation'], 0))

        altitude = params['elevation']

        location = geolocator.reverse('{}, {}'.format(lat, lon), zoom=14)

        gpx_name = 'You have uploaded <b style="color: #004170;">' + os.path.basename(gpx.name) + '</b>'
        location = '<p style="color: #004170">' + str(location) + '</p>'

        dates_list = gen_dates_list()
        day_read = dates_list[0]
        date_filt = datetime.strptime(day_read, '%A %d %B %Y')
        date_filt = date_filt.strftime('%Y-%m-%d')
        day_print = '<h2>' + day_read + '</h2>'

        sunrise, sunset = sunrise_sunset(lat, lon, datetime.strptime(day_read, '%A %d %B %Y'))

        dates = gr.Dropdown(choices=dates_list, label='2. Next, pick up the date of your hike', value=dates_list[0], interactive=True, elem_classes='required-dropdown')

        dfs = json_parser(date_filt)

    try:
        parse_gpx(gpx)
    except Exception as error:
        traceback.print_exc()
        parse_gpx(gpx_path)
        global gpx_name
        gpx_name = '<b style="color: firebrick;">ERROR: Not a valid GPX file. Upload another file.</b>'

    return gpx_name, location, dates, day_print, sunrise, sunset, dfs

# Choose a date from the dropdown menu
def date_chooser(day):
    global day_read
    global sunrise
    global sunset
    global sunrise_icon
    global sunset_icon
    global dates_dict
    global dates_list

    dates_list = gen_dates_list()

    day_read = day
    day_print = '<h2>' + day_read + '</h2>'

    date = datetime.strptime(day, '%A %d %B %Y')

    index = dates_list.index(day)

    sunrise, sunset = sunrise_sunset(lat, lon, date)

    date_filt = date.strftime('%Y-%m-%d')
    dfs = json_parser(date_filt)

    dates = gr.Dropdown(choices=dates_list, label='2. Next, pick up the date of your hike', value=dates_list[index], interactive=True, elem_classes='required-dropdown')

    return day_print, sunrise, sunset, dfs, dates

# Call functions with default values
coor_gpx(gpx_path)
sunrise, sunset = sunrise_sunset(lat, lon, today)
dfs = json_parser(dates_filt[0])

### Gradio app ###
with gr.Blocks(theme='ParityError/Interstellar', css=css, fill_height=True) as demo:
    with gr.Column():
        with gr.Row():
            gr.HTML('<h1 style="color: DarkGoldenrod">Freedom Luxembourg<br><h3 style="color: #004170">The Weather for Hikers</h3></h1>')
            with gr.Column():
                upload_gpx = gr.UploadButton(label='1. Upload your GPX track', file_count='single', size='lg', file_types=['.gpx', '.GPX'], elem_id='button', elem_classes='buttons', interactive=True)
                file_name = gr.HTML('<h6>' + gpx_name + '</h6>')
            dates = gr.Dropdown(choices=gen_dates_list(), label='2. Pick up the date of your hike', value=dates_list[0], interactive=True, elem_classes='required-dropdown')
        gr.HTML('<h1><br></h1>')
        with gr.Row():
            choosen_date = gr.HTML(day_print)
            loc = gr.HTML('<p style="color: #004170">' + str(location) + '</p>')
            sunrise = gr.HTML(sunrise)
            sunset = gr.HTML(sunset)
    table = gr.DataFrame(dfs, max_height=1000, type='pandas', headers=None, line_breaks=False, interactive=False, wrap=True, visible=True, render=True,
            elem_id='table', elem_classes='tables',
            datatype=['str', 'html', 'str', 'str', 'str', 'str', 'str', 'str'],
            )
    gr.HTML('<center>Freedom Luxembourg<br><a style="color: DarkGoldenrod; font-style: italic; text-decoration: none" href="https://www.freeletz.lu/freeletz/" target="_blank">freeletz.lu</a></center>')
    gr.HTML('<center>Powered by <a style="color: #004170; text-decoration: none" href="https://open-meteo.com/" target="_blank">Open Meteo</a></center>')
    upload_gpx.upload(fn=coor_gpx, inputs=upload_gpx, outputs=[file_name, loc, dates, choosen_date, sunrise, sunset, table])
    dates.input(fn=date_chooser, inputs=dates, outputs=[choosen_date, sunrise, sunset, table, dates])

def restart_app():
    demo.close()
    port = int(os.environ.get('PORT', 7860))
    demo.launch(server_name="0.0.0.0", server_port=port)

scheduler = BackgroundScheduler({'apscheduler.timezone': 'Europe/Luxembourg'})
scheduler.add_job(func=restart_app, trigger='cron', hour='05', minute='55')
scheduler.start()

port = int(os.environ.get('PORT', 7860))
demo.launch(server_name="0.0.0.0", server_port=port)