from transformers import pipeline import streamlit as st from PIL import Image # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # text2story def text2story(text): text_to_story_model = pipeline("text-generation", model="distilbert/distilgpt2") if isinstance(text, list): text="".join(text)# Ensure input is a single string story_text = text_to_story_model(text, max_length=100, num_return_sequences=1) return story_text[0]['generated text'] # text2audio def text2audio(story_text): text_to_audio_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") audio_data = text_to_audio_model(story_text) return audio_data #main part st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Story") uploaded_file= st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name,"wb") as file: file.write(bytes_data) st.image(uploaded_file,caption="Uploaded Image", use_column_width=True) #Stage 1:Image to Text st.text('Processing img2text...') scenario = img2text(uploaded_file) st.write(scenario) #Stage 2: Text to Story st.text('Generating a story...') story = text2story(scenario) st.write(story) #Stage 3:Story to Audio data st.text('Generating audio data...') audio_data =text2audio(story) # Play button if st.button("Play Audio"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate'])