Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
-
|
8 |
-
st.write("Enter a sentence to analyze its sentiment:")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
result = sentiment_pipeline(user_input)
|
13 |
-
sentiment = result[0]["label"]
|
14 |
-
confidence = result[0]["score"]
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from io import BytesIO
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load pipelines
|
7 |
+
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
8 |
+
text_to_speech = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
9 |
|
10 |
+
st.title("Image-to-Text and Text-to-Speech App")
|
|
|
11 |
|
12 |
+
# Image uploader
|
13 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
|
|
|
|
|
|
14 |
|
15 |
+
if uploaded_image:
|
16 |
+
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
17 |
+
|
18 |
+
# Convert image to text
|
19 |
+
image_bytes = uploaded_image.read()
|
20 |
+
text_output = image_to_text(image_bytes)[0]['generated_text']
|
21 |
+
st.write("### Extracted Text:")
|
22 |
+
st.write(text_output)
|
23 |
+
|
24 |
+
# Convert text to speech
|
25 |
+
speech_output = text_to_speech(text_output)
|
26 |
+
audio_bytes = BytesIO(speech_output['audio'])
|
27 |
+
|
28 |
+
st.write("### Listen to Speech Output:")
|
29 |
+
st.audio(audio_bytes, format="audio/wav")
|