Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1eyNEXhQE4T_7cq-MsPQ77p7h6xdrOpzk
|
8 |
+
"""
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import torch
|
12 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
13 |
+
|
14 |
+
# 모델 경로 설정
|
15 |
+
model_path = "./model" # 업로드된 모델 디렉토리 경로
|
16 |
+
|
17 |
+
# 모델과 토크나이저 로드
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("klue/bert-base")
|
20 |
+
|
21 |
+
# 예측 함수
|
22 |
+
def predict(text):
|
23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
24 |
+
outputs = model(**inputs)
|
25 |
+
probabilities = torch.sigmoid(outputs.logits)
|
26 |
+
depression_prob = probabilities[0, 1].item()
|
27 |
+
|
28 |
+
if depression_prob > 0.5:
|
29 |
+
return f"Depressed (Confidence: {depression_prob:.2%})"
|
30 |
+
else:
|
31 |
+
return f"Not Depressed (Confidence: {1 - depression_prob:.2%})"
|
32 |
+
|
33 |
+
# Gradio 인터페이스
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=predict,
|
36 |
+
inputs=gr.Textbox(label="Enter your text here"),
|
37 |
+
outputs=gr.Textbox(label="Result"),
|
38 |
+
title="Depression Detection",
|
39 |
+
description="Predict the likelihood of depression based on text input.",
|
40 |
+
)
|
41 |
+
|
42 |
+
interface.launch()
|