File size: 1,452 Bytes
347886f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541b73b
 
 
 
347886f
 
 
0ec63df
 
347886f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import cv2
import gradio as gr
from ultralytics import YOLO
from PIL import Image

model = YOLO('wind_turbine_anomaly_detector.pt')

def detect_turbine_anomaly(image):
    result = model(image)
    
    for r in result:
        im_array = r.plot()
        # im = Image.fromarray(im_array[..., ::-1])
        return Image.fromarray(im_array[..., ::-1])



description = """
<center><img src="https://huggingface.co/spaces/intelliarts/hotspot-anomaly-detection-for-solar-panels/resolve/main/images/ia_logo.png" width=270px> </center><br>
<p style="font-size: 20px; text-align: center;"">This is a demo of a wind farm management model designed to monitor the condition of wind turbines. It can be integrated into a drone surveillance system to enhance inspection processes. The model identifies obstacles such as power lines and antennas, helping to plan efficient paths for drones and preventing potential collisions. You can test the model with your own drone footage or utilize samples from our dataset.</p>
"""


demo = gr.Interface(fn=detect_turbine_anomaly, inputs=gr.Image(type='pil'), outputs="image",
                    examples=[['images/test_image_1.png'], ['images/test_image_2.png'],
                              ['images/test_image_3.png'], ['images/test_image_4.png']],
                    examples_per_page=4,
                    cache_examples= False,
                    # description=description
                    )  
demo.launch()