igor commited on
Commit
86682d1
·
1 Parent(s): 84d29af
Files changed (2) hide show
  1. app.py +20 -57
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,64 +1,27 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient(model="igor-im/flux_prompt_expander")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from gradio.components import textbox
3
+ from huggingface_hub import hf_hub_download
4
 
5
+ from vllm import LLM, SamplingParams
 
 
 
6
 
7
+ def run_gguf_inference(prompt):
8
+ PROMPT_TEMPLATE = "<|user|>\n{prompt}</s>\n<|assistant|>\n" # noqa: E501
9
+ prompt = PROMPT_TEMPLATE.format(prompt=prompt)
10
+ # Create a sampling params object.
11
+ sampling_params = SamplingParams(temperature=0, max_tokens=128)
12
 
13
+ # Create an LLM.
14
+ llm = LLM(model="igor-im/flux_prompt_expander",
15
+ tokenizer="igor-im/flux_prompt_expander",
16
+ gpu_memory_utilization=0.95)
 
 
 
 
 
17
 
18
+ outputs = llm.generate(prompt, sampling_params)
19
+ # Print the outputs.
20
+ for output in outputs:
21
+ prompt = output.prompt
22
+ generated_text = output.outputs[0].text
23
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
24
 
25
+ interface = gr.Interface(fn=run_gguf_inference, inputs='textbox', outputs='textbox')
26
 
27
+ interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio
3
+ transformers
4
+ vllm