Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
from PIL import Image | |
from diffusers import ( | |
StableDiffusionControlNetImg2ImgPipeline, | |
ControlNetModel, | |
DDIMScheduler, | |
) | |
from diffusers.utils import load_image | |
from PIL import Image | |
controlnet = ControlNetModel.from_pretrained( | |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
def resize_for_condition_image(input_image: Image.Image, resolution: int): | |
input_image = input_image.convert("RGB") | |
W, H = input_image.size | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(round(H / 64.0)) * 64 | |
W = int(round(W / 64.0)) * 64 | |
img = input_image.resize((W, H), resample=Image.LANCZOS) | |
return img | |
def inference( | |
init_image: Image.Image, | |
qrcode_image: Image.Image, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 10.0, | |
controlnet_conditioning_scale: float = 2.0, | |
strength: float = 0.8, | |
seed: int = -1, | |
num_inference_steps: int = 50, | |
): | |
init_image = resize_for_condition_image(init_image, 768) | |
qrcode_image = resize_for_condition_image(qrcode_image, 768) | |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=init_image, # type: ignore | |
control_image=qrcode_image, # type: ignore | |
width=768, # type: ignore | |
height=768, # type: ignore | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, # type: ignore | |
generator=generator, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
) # type: ignore | |
return out.images[0] | |
with gr.Blocks() as blocks: | |
gr.Markdown( | |
"""# AI QR Code Generator | |
model by: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15 | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
init_image = gr.Image(label="Init Image", type="pil") | |
qr_code_image = gr.Image(label="QR Code Image", type="pil") | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="ugly, disfigured, low quality, blurry, nsfw", | |
) | |
with gr.Accordion(label="Params"): | |
guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=50.0, | |
step=0.1, | |
value=10.0, | |
label="Guidance Scale", | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=2.0, | |
label="Controlnet Conditioning Scale", | |
) | |
strength = gr.Slider( | |
minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="Strength" | |
) | |
seed = gr.Slider( | |
minimum=-1, | |
maximum=9999999999, | |
step=1, | |
value=2313123, | |
label="Seed", | |
randomize=True, | |
) | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
result_image = gr.Image(label="Result Image") | |
run_btn.click( | |
inference, | |
inputs=[ | |
init_image, | |
qr_code_image, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
strength, | |
seed, | |
], | |
outputs=[result_image], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"./examples/init.jpeg", | |
"./examples/qrcode.png", | |
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.", | |
"ugly, disfigured, low quality, blurry, nsfw", | |
10.0, | |
2.0, | |
0.8, | |
2313123, | |
] | |
], | |
fn=inference, | |
inputs=[ | |
init_image, | |
qr_code_image, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
strength, | |
seed, | |
], | |
outputs=[result_image], | |
) | |
blocks.queue() | |
blocks.launch() | |