Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
# Initialisation du modèle HF中国镜像站
|
5 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
6 |
|
7 |
# Messages système pour guider le modèle
|
8 |
SYSTEM_PROMPT = {
|
9 |
-
"fr": "Tu es un assistant pédagogique qui aide les professeurs à créer des cours.",
|
10 |
-
"en": "You are an educational assistant helping teachers create courses."
|
11 |
}
|
12 |
|
13 |
-
# Fonction
|
14 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
system_message = SYSTEM_PROMPT.get(lang, SYSTEM_PROMPT["en"]) # Sélection de la langue
|
16 |
|
17 |
messages = [{"role": "system", "content": system_message}]
|
18 |
|
|
|
19 |
for message in history:
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
22 |
messages.append({"role": "user", "content": f"Crée un cours sur : {subject}"})
|
23 |
|
|
|
24 |
response = ""
|
25 |
for message in client.chat_completion(
|
26 |
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
@@ -29,15 +48,17 @@ def generate_course(subject, history, lang, max_tokens, temperature, top_p):
|
|
29 |
response += token
|
30 |
yield response
|
31 |
|
32 |
-
# Interface utilisateur
|
33 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
34 |
-
gr.Markdown("# 🎓 Teacher Assistant Chatbot")
|
35 |
|
36 |
with gr.Row():
|
37 |
subject_input = gr.Textbox(label="📌 Sujet du cours", placeholder="Ex: Apprentissage automatique")
|
38 |
lang_select = gr.Dropdown(choices=["fr", "en"], value="fr", label="🌍 Langue")
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
with gr.Row():
|
43 |
max_tokens = gr.Slider(minimum=100, maximum=2048, value=512, step=1, label="📝 Max tokens")
|
@@ -47,11 +68,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
47 |
generate_button = gr.Button("🚀 Générer le cours")
|
48 |
|
49 |
generate_button.click(
|
50 |
-
|
51 |
-
inputs=[subject_input, chat, lang_select, max_tokens, temperature, top_p],
|
52 |
outputs=chat
|
53 |
)
|
54 |
|
55 |
-
# Lancer l'application
|
56 |
if __name__ == "__main__":
|
57 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import PyPDF2
|
4 |
|
5 |
# Initialisation du modèle HF中国镜像站
|
6 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
7 |
|
8 |
# Messages système pour guider le modèle
|
9 |
SYSTEM_PROMPT = {
|
10 |
+
"fr": "Tu es un assistant pédagogique qui aide les professeurs à créer des cours et analyser des documents PDF.",
|
11 |
+
"en": "You are an educational assistant helping teachers create courses and analyze PDF documents."
|
12 |
}
|
13 |
|
14 |
+
# 📄 Fonction pour lire et extraire le texte d'un PDF
|
15 |
+
def extract_text_from_pdf(pdf_file):
|
16 |
+
text = ""
|
17 |
+
with pdf_file as f:
|
18 |
+
reader = PyPDF2.PdfReader(f)
|
19 |
+
for page in reader.pages:
|
20 |
+
text += page.extract_text() + "\n"
|
21 |
+
return text
|
22 |
+
|
23 |
+
# 🧠 Fonction du chatbot avec gestion de l'historique + PDF RAG
|
24 |
+
def generate_response(subject, history, lang, pdf_file, max_tokens, temperature, top_p):
|
25 |
system_message = SYSTEM_PROMPT.get(lang, SYSTEM_PROMPT["en"]) # Sélection de la langue
|
26 |
|
27 |
messages = [{"role": "system", "content": system_message}]
|
28 |
|
29 |
+
# 🔄 Correction du format de l'historique
|
30 |
for message in history:
|
31 |
+
if isinstance(message, dict) and "role" in message and "content" in message:
|
32 |
+
messages.append(message)
|
33 |
+
|
34 |
+
# 📄 Ajouter le contenu du PDF s'il y en a un
|
35 |
+
if pdf_file is not None:
|
36 |
+
pdf_text = extract_text_from_pdf(pdf_file)
|
37 |
+
messages.append({"role": "user", "content": f"Voici un document PDF pertinent : {pdf_text[:1000]}..."}) # On limite à 1000 caractères pour éviter la surcharge
|
38 |
|
39 |
+
# Ajouter la demande de l'utilisateur
|
40 |
messages.append({"role": "user", "content": f"Crée un cours sur : {subject}"})
|
41 |
|
42 |
+
# 🔥 Génération de la réponse en streaming
|
43 |
response = ""
|
44 |
for message in client.chat_completion(
|
45 |
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
|
|
48 |
response += token
|
49 |
yield response
|
50 |
|
51 |
+
# 🎨 Interface utilisateur Gradio
|
52 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
53 |
+
gr.Markdown("# 🎓 Teacher Assistant Chatbot avec PDF RAG")
|
54 |
|
55 |
with gr.Row():
|
56 |
subject_input = gr.Textbox(label="📌 Sujet du cours", placeholder="Ex: Apprentissage automatique")
|
57 |
lang_select = gr.Dropdown(choices=["fr", "en"], value="fr", label="🌍 Langue")
|
58 |
|
59 |
+
pdf_upload = gr.File(label="📄 Télécharger un PDF (optionnel)", type="file")
|
60 |
+
|
61 |
+
chat = gr.Chatbot(type="messages") # ✅ Correction : Format messages OK
|
62 |
|
63 |
with gr.Row():
|
64 |
max_tokens = gr.Slider(minimum=100, maximum=2048, value=512, step=1, label="📝 Max tokens")
|
|
|
68 |
generate_button = gr.Button("🚀 Générer le cours")
|
69 |
|
70 |
generate_button.click(
|
71 |
+
generate_response,
|
72 |
+
inputs=[subject_input, chat, lang_select, pdf_upload, max_tokens, temperature, top_p],
|
73 |
outputs=chat
|
74 |
)
|
75 |
|
76 |
+
# 🔥 Lancer l'application
|
77 |
if __name__ == "__main__":
|
78 |
demo.launch()
|