Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import tensorflow as tf
|
3 |
+
from tf_keras import models, layers
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, TFAutoModelForQuestionAnswering
|
5 |
+
import gradio as gr
|
6 |
+
import re
|
7 |
+
|
8 |
+
# Check if GPU is available and use it if possible
|
9 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
# Load the models and tokenizers
|
12 |
+
qa_model_name = 'salsarra/ConfliBERT-QA'
|
13 |
+
qa_model = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name)
|
14 |
+
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
15 |
+
|
16 |
+
ner_model_name = 'eventdata-utd/conflibert-named-entity-recognition'
|
17 |
+
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_name).to(device)
|
18 |
+
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_name)
|
19 |
+
|
20 |
+
clf_model_name = 'eventdata-utd/conflibert-binary-classification'
|
21 |
+
clf_model = AutoModelForSequenceClassification.from_pretrained(clf_model_name).to(device)
|
22 |
+
clf_tokenizer = AutoTokenizer.from_pretrained(clf_model_name)
|
23 |
+
|
24 |
+
multi_clf_model_name = 'eventdata-utd/conflibert-satp-relevant-multilabel'
|
25 |
+
multi_clf_model = AutoModelForSequenceClassification.from_pretrained(multi_clf_model_name).to(device)
|
26 |
+
multi_clf_tokenizer = AutoTokenizer.from_pretrained(multi_clf_model_name)
|
27 |
+
|
28 |
+
# Define the class names for text classification
|
29 |
+
class_names = ['Negative', 'Positive']
|
30 |
+
multi_class_names = ["Armed Assault", "Bombing or Explosion", "Kidnapping", "Other"] # Updated labels
|
31 |
+
|
32 |
+
# Define the NER labels and colors
|
33 |
+
ner_labels = {
|
34 |
+
'Organisation': 'blue',
|
35 |
+
'Person': 'red',
|
36 |
+
'Location': 'green',
|
37 |
+
'Quantity': 'orange',
|
38 |
+
'Weapon': 'purple',
|
39 |
+
'Nationality': 'cyan',
|
40 |
+
'Temporal': 'magenta',
|
41 |
+
'DocumentReference': 'brown',
|
42 |
+
'MilitaryPlatform': 'yellow',
|
43 |
+
'Money': 'pink'
|
44 |
+
}
|
45 |
+
|
46 |
+
def handle_error_message(e, default_limit=512):
|
47 |
+
error_message = str(e)
|
48 |
+
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
|
49 |
+
match = pattern.search(error_message)
|
50 |
+
if match:
|
51 |
+
number_1, number_2 = match.groups()
|
52 |
+
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
|
53 |
+
pattern_qa = re.compile(r"indices\[0,(\d+)\] = \d+ is not in \[0, (\d+)\)")
|
54 |
+
match_qa = pattern_qa.search(error_message)
|
55 |
+
if match_qa:
|
56 |
+
number_1, number_2 = match_qa.groups()
|
57 |
+
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
|
58 |
+
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"
|
59 |
+
|
60 |
+
# Define the functions for each task
|
61 |
+
def question_answering(context, question):
|
62 |
+
try:
|
63 |
+
inputs = qa_tokenizer(question, context, return_tensors='tf', truncation=True)
|
64 |
+
outputs = qa_model(inputs)
|
65 |
+
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
|
66 |
+
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
|
67 |
+
answer = qa_tokenizer.convert_tokens_to_string(qa_tokenizer.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
|
68 |
+
return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
|
69 |
+
except Exception as e:
|
70 |
+
return handle_error_message(e)
|
71 |
+
|
72 |
+
def replace_unk(tokens):
|
73 |
+
return [token.replace('[UNK]', "'") for token in tokens]
|
74 |
+
|
75 |
+
def named_entity_recognition(text):
|
76 |
+
try:
|
77 |
+
inputs = ner_tokenizer(text, return_tensors='pt', truncation=True)
|
78 |
+
with torch.no_grad():
|
79 |
+
outputs = ner_model(**inputs)
|
80 |
+
ner_results = outputs.logits.argmax(dim=2).squeeze().tolist()
|
81 |
+
tokens = ner_tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze().tolist())
|
82 |
+
tokens = replace_unk(tokens)
|
83 |
+
entities = []
|
84 |
+
seen_labels = set()
|
85 |
+
for i in range(len(tokens)):
|
86 |
+
token = tokens[i]
|
87 |
+
label = ner_model.config.id2label[ner_results[i]].split('-')[-1]
|
88 |
+
if token.startswith('##'):
|
89 |
+
if entities:
|
90 |
+
entities[-1][0] += token[2:]
|
91 |
+
else:
|
92 |
+
entities.append([token, label])
|
93 |
+
if label != 'O':
|
94 |
+
seen_labels.add(label)
|
95 |
+
|
96 |
+
highlighted_text = ""
|
97 |
+
for token, label in entities:
|
98 |
+
color = ner_labels.get(label, 'black')
|
99 |
+
if label != 'O':
|
100 |
+
highlighted_text += f"<span style='color: {color}; font-weight: bold;'>{token}</span> "
|
101 |
+
else:
|
102 |
+
highlighted_text += f"{token} "
|
103 |
+
|
104 |
+
legend = "<div><strong>NER Tags Found:</strong><ul style='list-style-type: disc; padding-left: 20px;'>"
|
105 |
+
for label in seen_labels:
|
106 |
+
color = ner_labels.get(label, 'black')
|
107 |
+
legend += f"<li style='color: {color}; font-weight: bold; display: inline; margin-right: 10px;'>{label}</li>"
|
108 |
+
legend += "</ul></div>"
|
109 |
+
|
110 |
+
return f"<div>{highlighted_text}</div>{legend}"
|
111 |
+
except Exception as e:
|
112 |
+
return handle_error_message(e)
|
113 |
+
|
114 |
+
def text_classification(text):
|
115 |
+
try:
|
116 |
+
inputs = clf_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
117 |
+
with torch.no_grad():
|
118 |
+
outputs = clf_model(**inputs)
|
119 |
+
logits = outputs.logits.squeeze().tolist()
|
120 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
121 |
+
confidence = torch.softmax(outputs.logits, dim=1).max().item() * 100
|
122 |
+
|
123 |
+
if predicted_class == 1: # Positive class
|
124 |
+
result = f"<span style='color: green; font-weight: bold;'>Positive: The text is related to conflict, violence, or politics. (Confidence: {confidence:.2f}%)</span>"
|
125 |
+
else: # Negative class
|
126 |
+
result = f"<span style='color: red; font-weight: bold;'>Negative: The text is not related to conflict, violence, or politics. (Confidence: {confidence:.2f}%)</span>"
|
127 |
+
return result
|
128 |
+
except Exception as e:
|
129 |
+
return handle_error_message(e)
|
130 |
+
|
131 |
+
def multilabel_classification(text):
|
132 |
+
try:
|
133 |
+
inputs = multi_clf_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
134 |
+
with torch.no_grad():
|
135 |
+
outputs = multi_clf_model(**inputs)
|
136 |
+
predicted_classes = torch.sigmoid(outputs.logits).squeeze().tolist()
|
137 |
+
if len(predicted_classes) != len(multi_class_names):
|
138 |
+
return f"Error: Number of predicted classes ({len(predicted_classes)}) does not match number of class names ({len(multi_class_names)})."
|
139 |
+
|
140 |
+
results = []
|
141 |
+
for i in range(len(predicted_classes)):
|
142 |
+
confidence = predicted_classes[i] * 100
|
143 |
+
if predicted_classes[i] >= 0.5:
|
144 |
+
results.append(f"<span style='color: green; font-weight: bold;'>{multi_class_names[i]} (Confidence: {confidence:.2f}%)</span>")
|
145 |
+
else:
|
146 |
+
results.append(f"<span style='color: red; font-weight: bold;'>{multi_class_names[i]} (Confidence: {confidence:.2f}%)</span>")
|
147 |
+
|
148 |
+
return " / ".join(results)
|
149 |
+
except Exception as e:
|
150 |
+
return handle_error_message(e)
|
151 |
+
|
152 |
+
# Define the Gradio interface
|
153 |
+
def chatbot(task, text=None, context=None, question=None):
|
154 |
+
if task == "Question Answering":
|
155 |
+
if context and question:
|
156 |
+
return question_answering(context, question)
|
157 |
+
else:
|
158 |
+
return "Please provide both context and question for the Question Answering task."
|
159 |
+
elif task == "Named Entity Recognition":
|
160 |
+
if text:
|
161 |
+
return named_entity_recognition(text)
|
162 |
+
else:
|
163 |
+
return "Please provide text for the Named Entity Recognition task."
|
164 |
+
elif task == "Text Classification":
|
165 |
+
if text:
|
166 |
+
return text_classification(text)
|
167 |
+
else:
|
168 |
+
return "Please provide text for the Text Classification task."
|
169 |
+
elif task == "Multilabel Classification":
|
170 |
+
if text:
|
171 |
+
return multilabel_classification(text)
|
172 |
+
else:
|
173 |
+
return "Please provide text for the Multilabel Classification task."
|
174 |
+
else:
|
175 |
+
return "Please select a valid task."
|
176 |
+
|
177 |
+
css = """
|
178 |
+
body {
|
179 |
+
background-color: #f0f8ff;
|
180 |
+
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
181 |
+
}
|
182 |
+
|
183 |
+
h1 {
|
184 |
+
color: #2e8b57;
|
185 |
+
text-align: center;
|
186 |
+
font-size: 2em;
|
187 |
+
}
|
188 |
+
|
189 |
+
h2 {
|
190 |
+
color: #ff8c00;
|
191 |
+
text-align: center;
|
192 |
+
font-size: 1.5em;
|
193 |
+
}
|
194 |
+
|
195 |
+
.gradio-container {
|
196 |
+
max-width: 100%;
|
197 |
+
margin: 10px auto;
|
198 |
+
padding: 10px;
|
199 |
+
background-color: #ffffff;
|
200 |
+
border-radius: 10px;
|
201 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
202 |
+
}
|
203 |
+
|
204 |
+
.gr-input, .gr-output {
|
205 |
+
background-color: #ffffff;
|
206 |
+
border: 1px solid #ddd;
|
207 |
+
border-radius: 5px;
|
208 |
+
padding: 10px;
|
209 |
+
font-size: 1em;
|
210 |
+
}
|
211 |
+
|
212 |
+
.gr-title {
|
213 |
+
font-size: 1.5em;
|
214 |
+
font-weight: bold;
|
215 |
+
color: #2e8b57;
|
216 |
+
margin-bottom: 10px;
|
217 |
+
text-align: center;
|
218 |
+
}
|
219 |
+
|
220 |
+
.gr-description {
|
221 |
+
font-size: 1.2em;
|
222 |
+
color: #ff8c00;
|
223 |
+
margin-bottom: 10px;
|
224 |
+
text-align: center;
|
225 |
+
}
|
226 |
+
|
227 |
+
.header {
|
228 |
+
display: flex;
|
229 |
+
justify-content: space-between;
|
230 |
+
align-items: center;
|
231 |
+
padding: 10px;
|
232 |
+
flex-wrap: wrap;
|
233 |
+
}
|
234 |
+
|
235 |
+
.header-title-left, .header-title-right, .header-title-center {
|
236 |
+
flex: 1 1 30%;
|
237 |
+
text-align: center;
|
238 |
+
}
|
239 |
+
|
240 |
+
.header-title-left a, .header-title-center a, .header-title-right a {
|
241 |
+
color: inherit;
|
242 |
+
text-decoration: none;
|
243 |
+
font-size: 1em;
|
244 |
+
display: block;
|
245 |
+
}
|
246 |
+
|
247 |
+
.header-title-center a {
|
248 |
+
font-size: 4em; /* Increased font size */
|
249 |
+
font-weight: bold; /* Made text bold */
|
250 |
+
color: darkorange; /* Darker orange color */
|
251 |
+
}
|
252 |
+
|
253 |
+
.header-title-left a {
|
254 |
+
color: green; /* Changed color to green */
|
255 |
+
font-weight: bold; /* Made text bold */
|
256 |
+
font-size: 1.3em; /* Increased font size */
|
257 |
+
}
|
258 |
+
|
259 |
+
.header-title-right a {
|
260 |
+
color: green; /* Changed color to green */
|
261 |
+
font-weight: bold; /* Made text bold */
|
262 |
+
font-size: 1.3em; /* Increased font size */
|
263 |
+
}
|
264 |
+
|
265 |
+
.gr-button {
|
266 |
+
background-color: #ff8c00;
|
267 |
+
color: white;
|
268 |
+
border: none;
|
269 |
+
padding: 10px 20px;
|
270 |
+
font-size: 1em;
|
271 |
+
border-radius: 5px;
|
272 |
+
cursor: pointer;
|
273 |
+
}
|
274 |
+
|
275 |
+
.gr-button:hover {
|
276 |
+
background-color: #ff4500;
|
277 |
+
}
|
278 |
+
|
279 |
+
.footer {
|
280 |
+
text-align: center;
|
281 |
+
margin-top: 10px;
|
282 |
+
font-size: 0.9em;
|
283 |
+
color: #666;
|
284 |
+
width: 100%;
|
285 |
+
}
|
286 |
+
|
287 |
+
.footer a {
|
288 |
+
color: #2e8b57;
|
289 |
+
font-weight: bold;
|
290 |
+
text-decoration: none;
|
291 |
+
}
|
292 |
+
|
293 |
+
.footer a:hover {
|
294 |
+
text-decoration: underline;
|
295 |
+
}
|
296 |
+
"""
|
297 |
+
|
298 |
+
with gr.Blocks(css=css) as demo:
|
299 |
+
with gr.Row(elem_id="header"):
|
300 |
+
gr.Markdown("<div class='header-title-left'><a href='https://eventdata.utdallas.edu/'>UTD Event Data</a></div>", elem_id="header-title-left")
|
301 |
+
gr.Markdown("<div class='header-title-center'><a href='https://eventdata.utdallas.edu/conflibert/'>ConfliBERT</a></div>", elem_id="header-title-center")
|
302 |
+
gr.Markdown("<div class='header-title-right'><a href='https://www.utdallas.edu/'>University of Texas at Dallas</a></div>", elem_id="header-title-right")
|
303 |
+
|
304 |
+
gr.Markdown("Select a task and provide the necessary inputs.")
|
305 |
+
|
306 |
+
task = gr.Dropdown(choices=["Question Answering", "Named Entity Recognition", "Text Classification", "Multilabel Classification"], label="Select Task")
|
307 |
+
|
308 |
+
with gr.Row():
|
309 |
+
text_input = gr.Textbox(lines=5, placeholder="Enter the text here...", label="Text")
|
310 |
+
context_input = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context", visible=False)
|
311 |
+
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question", visible=False)
|
312 |
+
|
313 |
+
output = gr.HTML(label="Output")
|
314 |
+
|
315 |
+
def update_inputs(task):
|
316 |
+
if task == "Question Answering":
|
317 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
318 |
+
else:
|
319 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
320 |
+
|
321 |
+
task.change(fn=update_inputs, inputs=task, outputs=[text_input, context_input, question_input])
|
322 |
+
|
323 |
+
def chatbot_interface(task, text, context, question):
|
324 |
+
result = chatbot(task, text, context, question)
|
325 |
+
return result
|
326 |
+
|
327 |
+
submit_button = gr.Button("Submit", elem_id="gr-button")
|
328 |
+
submit_button.click(fn=chatbot_interface, inputs=[task, text_input, context_input, question_input], outputs=output)
|
329 |
+
|
330 |
+
gr.Markdown("<div class='footer'>Developed By: <a href='https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/' target='_blank'>Sultan Alsarra</a></div>")
|
331 |
+
|
332 |
+
demo.launch(share=True)
|