duwing commited on
Commit
2130106
·
verified ·
1 Parent(s): 6b606cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -2
app.py CHANGED
@@ -1,4 +1,44 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ import pandas as pd
5
+ from transformers import *
6
+ import json
7
+ import numpy as np
8
+ import pandas as pd
9
+ from tqdm import tqdm
10
+ import os
11
+ from tensorflow.python.client import device_lib
12
 
13
+ model = TFBertModel.from_pretrained('/huggingface_bert.h5')
14
+
15
+ def sentence_convert_data(data):
16
+ global tokenizer
17
+ tokens, masks, segments = [], [], []
18
+ token = tokenizer.encode(data, max_length=SEQ_LEN, truncation=True, padding='max_length')
19
+
20
+ num_zeros = token.count(0)
21
+ mask = [1]*(SEQ_LEN-num_zeros) + [0]*num_zeros
22
+ segment = [0]*SEQ_LEN
23
+
24
+ tokens.append(token)
25
+ segments.append(segment)
26
+ masks.append(mask)
27
+
28
+ tokens = np.array(tokens)
29
+ masks = np.array(masks)
30
+ segments = np.array(segments)
31
+ return [tokens, masks, segments]
32
+
33
+ def movie_evaluation_predict(sentence):
34
+ data_x = sentence_convert_data(sentence)
35
+ predict = sentiment_model.predict(data_x)
36
+ predict_value = np.ravel(predict)
37
+ predict_answer = np.round(predict_value,0).item()
38
+
39
+ print(predict_value)
40
+
41
+ if predict_answer == 0:
42
+ st.write("(부정 확률 : %.2f) 부정적인 영화 평가입니다." % (1.0-predict_value))
43
+ elif predict_answer == 1:
44
+ st.write("(긍정 확률 : %.2f) 긍정적인 영화 평가입니다." % predict_value)