진승환 commited on
Commit
6b147e8
·
1 Parent(s): b0bd625

Initial commit: Upload Spark-TTS-main

Browse files
README.md CHANGED
@@ -1,9 +1,11 @@
 
1
  ---
2
  title: Spark-TTS
3
  app_file: webui.py
4
  sdk: gradio
5
  sdk_version: 5.18.0
6
  ---
 
7
  <div align="center">
8
  <h1>
9
  Spark-TTS
@@ -345,4 +347,4 @@ Please note:
345
 
346
  - The developers assume no liability for any misuse of this model.
347
 
348
- We advocate for the responsible development and use of AI and encourage the community to uphold safety and ethical principles in AI research and applications. If you have any concerns regarding ethics or misuse, please contact us.
 
1
+
2
  ---
3
  title: Spark-TTS
4
  app_file: webui.py
5
  sdk: gradio
6
  sdk_version: 5.18.0
7
  ---
8
+ 8d6d7f5 (Initial commit: Upload Spark-TTS-main)
9
  <div align="center">
10
  <h1>
11
  Spark-TTS
 
347
 
348
  - The developers assume no liability for any misuse of this model.
349
 
350
+ We advocate for the responsible development and use of AI and encourage the community to uphold safety and ethical principles in AI research and applications. If you have any concerns regarding ethics or misuse, please contact us.
sparktts/models/audio_tokenizer.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+ import numpy as np
19
+
20
+ from pathlib import Path
21
+ from typing import Any, Dict, Tuple
22
+ from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Model
23
+
24
+ from sparktts.utils.file import load_config
25
+ from sparktts.utils.audio import load_audio
26
+ from sparktts.models.bicodec import BiCodec
27
+
28
+
29
+ class BiCodecTokenizer:
30
+ """BiCodec tokenizer for handling audio input and tokenization."""
31
+
32
+ def __init__(self, model_dir: Path, device: torch.device = None, **kwargs):
33
+ super().__init__()
34
+ """
35
+ Args:
36
+ model_dir: Path to the model directory.
37
+ device: Device to run the model on (default is GPU if available).
38
+ """
39
+ self.device = device
40
+ self.model_dir = model_dir
41
+ self.config = load_config(f"{model_dir}/config.yaml")
42
+ self._initialize_model()
43
+
44
+ def _initialize_model(self):
45
+ """Load and initialize the BiCodec model and Wav2Vec2 feature extractor."""
46
+ self.model = BiCodec.load_from_checkpoint(f"{self.model_dir}/BiCodec").to(
47
+ self.device
48
+ )
49
+ self.processor = Wav2Vec2FeatureExtractor.from_pretrained(
50
+ f"{self.model_dir}/wav2vec2-large-xlsr-53"
51
+ )
52
+ self.feature_extractor = Wav2Vec2Model.from_pretrained(
53
+ f"{self.model_dir}/wav2vec2-large-xlsr-53"
54
+ ).to(self.device)
55
+ self.feature_extractor.config.output_hidden_states = True
56
+
57
+ def get_ref_clip(self, wav: np.ndarray) -> np.ndarray:
58
+ """Get reference audio clip for speaker embedding."""
59
+ ref_segment_length = (
60
+ int(self.config["sample_rate"] * self.config["ref_segment_duration"])
61
+ // self.config["latent_hop_length"]
62
+ * self.config["latent_hop_length"]
63
+ )
64
+ wav_length = len(wav)
65
+
66
+ if ref_segment_length > wav_length:
67
+ # Repeat and truncate to handle insufficient length
68
+ wav = np.tile(wav, ref_segment_length // wav_length + 1)
69
+
70
+ return wav[:ref_segment_length]
71
+
72
+ def process_audio(self, wav_path: Path) -> Tuple[np.ndarray, torch.Tensor]:
73
+ """load auido and get reference audio from wav path"""
74
+ wav = load_audio(
75
+ wav_path,
76
+ sampling_rate=self.config["sample_rate"],
77
+ volume_normalize=self.config["volume_normalize"],
78
+ )
79
+
80
+ wav_ref = self.get_ref_clip(wav)
81
+
82
+ wav_ref = torch.from_numpy(wav_ref).unsqueeze(0).float()
83
+ return wav, wav_ref
84
+
85
+ def extract_wav2vec2_features(self, wavs: torch.Tensor) -> torch.Tensor:
86
+ """extract wav2vec2 features"""
87
+ inputs = self.processor(
88
+ wavs,
89
+ sampling_rate=16000,
90
+ return_tensors="pt",
91
+ padding=True,
92
+ output_hidden_states=True,
93
+ ).input_values
94
+ feat = self.feature_extractor(inputs.to(self.feature_extractor.device))
95
+ feats_mix = (
96
+ feat.hidden_states[11] + feat.hidden_states[14] + feat.hidden_states[16]
97
+ ) / 3
98
+
99
+ return feats_mix
100
+
101
+ def tokenize_batch(self, batch: Dict[str, Any]) -> torch.Tensor:
102
+ """tokenize the batch of audio
103
+
104
+ Args:
105
+ batch:
106
+ wavs (List[np.ndarray]): batch of audio
107
+ ref_wavs (torch.Tensor): reference audio. shape: (batch_size, seq_len)
108
+
109
+ Returns:
110
+ semantic_tokens: semantic tokens. shape: (batch_size, seq_len, latent_dim)
111
+ global_tokens: global tokens. shape: (batch_size, seq_len, global_dim)
112
+ """
113
+ feats = self.extract_wav2vec2_features(batch["wav"])
114
+ batch["feat"] = feats
115
+ semantic_tokens, global_tokens = self.model.tokenize(batch)
116
+
117
+ return global_tokens, semantic_tokens
118
+
119
+ def tokenize(self, audio_path: str) -> Tuple[torch.Tensor, torch.Tensor]:
120
+ """tokenize the audio"""
121
+ wav, ref_wav = self.process_audio(audio_path)
122
+ feat = self.extract_wav2vec2_features(wav)
123
+ batch = {
124
+ "wav": torch.from_numpy(wav).unsqueeze(0).float().to(self.device),
125
+ "ref_wav": ref_wav.to(self.device),
126
+ "feat": feat.to(self.device),
127
+ }
128
+ semantic_tokens, global_tokens = self.model.tokenize(batch)
129
+
130
+ return global_tokens, semantic_tokens
131
+
132
+ def detokenize(
133
+ self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor
134
+ ) -> np.array:
135
+ """detokenize the tokens to waveform
136
+
137
+ Args:
138
+ global_tokens: global tokens. shape: (batch_size, global_dim)
139
+ semantic_tokens: semantic tokens. shape: (batch_size, latent_dim)
140
+
141
+ Returns:
142
+ wav_rec: waveform. shape: (batch_size, seq_len) for batch or (seq_len,) for single
143
+ """
144
+ global_tokens = global_tokens.unsqueeze(1)
145
+ wav_rec = self.model.detokenize(semantic_tokens, global_tokens)
146
+ return wav_rec.detach().squeeze().cpu().numpy()
147
+
148
+
149
+ # test
150
+ if __name__ == "__main__":
151
+ import soundfile as sf
152
+
153
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
154
+ tokenizer = BiCodecTokenizer(
155
+ model_dir="pretrained_models/Spark-TTS-0.5B",
156
+ device=device,
157
+ )
158
+ wav_path = "example/prompt_audio.wav"
159
+
160
+ global_tokens, semantic_tokens = tokenizer.tokenize(wav_path)
161
+
162
+ wav_rec = tokenizer.detokenize(global_tokens.squeeze(0), semantic_tokens)
163
+ sf.write("example/prompt_recon.wav", wav_rec, 16000)
sparktts/models/bicodec.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+ from pathlib import Path
19
+ from typing import Dict, Any
20
+ from omegaconf import DictConfig
21
+ from safetensors.torch import load_file
22
+
23
+ from sparktts.utils.file import load_config
24
+ from sparktts.modules.speaker.speaker_encoder import SpeakerEncoder
25
+ from sparktts.modules.encoder_decoder.feat_encoder import Encoder
26
+ from sparktts.modules.encoder_decoder.feat_decoder import Decoder
27
+ from sparktts.modules.encoder_decoder.wave_generator import WaveGenerator
28
+ from sparktts.modules.vq.factorized_vector_quantize import FactorizedVectorQuantize
29
+
30
+
31
+ class BiCodec(nn.Module):
32
+ """
33
+ BiCodec model for speech synthesis, incorporating a speaker encoder, feature encoder/decoder,
34
+ quantizer, and wave generator.
35
+ """
36
+
37
+ def __init__(
38
+ self,
39
+ mel_params: Dict[str, Any],
40
+ encoder: nn.Module,
41
+ decoder: nn.Module,
42
+ quantizer: nn.Module,
43
+ speaker_encoder: nn.Module,
44
+ prenet: nn.Module,
45
+ postnet: nn.Module,
46
+ **kwargs
47
+ ) -> None:
48
+ """
49
+ Initializes the BiCodec model with the required components.
50
+
51
+ Args:
52
+ mel_params (dict): Parameters for the mel-spectrogram transformer.
53
+ encoder (nn.Module): Encoder module.
54
+ decoder (nn.Module): Decoder module.
55
+ quantizer (nn.Module): Quantizer module.
56
+ speaker_encoder (nn.Module): Speaker encoder module.
57
+ prenet (nn.Module): Prenet network.
58
+ postnet (nn.Module): Postnet network.
59
+ """
60
+ super().__init__()
61
+ self.encoder = encoder
62
+ self.decoder = decoder
63
+ self.quantizer = quantizer
64
+ self.speaker_encoder = speaker_encoder
65
+ self.prenet = prenet
66
+ self.postnet = postnet
67
+ self.init_mel_transformer(mel_params)
68
+
69
+ @classmethod
70
+ def load_from_checkpoint(cls, model_dir: Path, **kwargs) -> "BiCodec":
71
+ """
72
+ Loads the model from a checkpoint.
73
+
74
+ Args:
75
+ model_dir (Path): Path to the model directory containing checkpoint and config.
76
+
77
+ Returns:
78
+ BiCodec: The initialized BiCodec model.
79
+ """
80
+ ckpt_path = f'{model_dir}/model.safetensors'
81
+ config = load_config(f'{model_dir}/config.yaml')['audio_tokenizer']
82
+ mel_params = config["mel_params"]
83
+ encoder = Encoder(**config["encoder"])
84
+ quantizer = FactorizedVectorQuantize(**config["quantizer"])
85
+ prenet = Decoder(**config["prenet"])
86
+ postnet = Decoder(**config["postnet"])
87
+ decoder = WaveGenerator(**config["decoder"])
88
+ speaker_encoder = SpeakerEncoder(**config["speaker_encoder"])
89
+
90
+ model = cls(
91
+ mel_params=mel_params,
92
+ encoder=encoder,
93
+ decoder=decoder,
94
+ quantizer=quantizer,
95
+ speaker_encoder=speaker_encoder,
96
+ prenet=prenet,
97
+ postnet=postnet,
98
+ )
99
+
100
+ state_dict = load_file(ckpt_path)
101
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
102
+
103
+ for key in missing_keys:
104
+ print(f"Missing tensor: {key}")
105
+ for key in unexpected_keys:
106
+ print(f"Unexpected tensor: {key}")
107
+
108
+ model.eval()
109
+ model.remove_weight_norm()
110
+
111
+ return model
112
+
113
+ def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]:
114
+ """
115
+ Performs a forward pass through the model.
116
+
117
+ Args:
118
+ batch (dict): A dictionary containing features, reference waveform, and target waveform.
119
+
120
+ Returns:
121
+ dict: A dictionary containing the reconstruction, features, and other metrics.
122
+ """
123
+ feat = batch["feat"]
124
+ mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
125
+
126
+ z = self.encoder(feat.transpose(1, 2))
127
+ vq_outputs = self.quantizer(z)
128
+
129
+ x_vector, d_vector = self.speaker_encoder(mel.transpose(1, 2))
130
+
131
+ conditions = d_vector
132
+ with_speaker_loss = False
133
+
134
+ x = self.prenet(vq_outputs["z_q"], conditions)
135
+ pred_feat = self.postnet(x)
136
+ x = x + conditions.unsqueeze(-1)
137
+ wav_recon = self.decoder(x)
138
+
139
+ return {
140
+ "vq_loss": vq_outputs["vq_loss"],
141
+ "perplexity": vq_outputs["perplexity"],
142
+ "cluster_size": vq_outputs["active_num"],
143
+ "recons": wav_recon,
144
+ "pred_feat": pred_feat,
145
+ "x_vector": x_vector,
146
+ "d_vector": d_vector,
147
+ "audios": batch["wav"].unsqueeze(1),
148
+ "with_speaker_loss": with_speaker_loss,
149
+ }
150
+
151
+ @torch.no_grad()
152
+ def tokenize(self, batch: Dict[str, Any]):
153
+ """
154
+ Tokenizes the input audio into semantic and global tokens.
155
+
156
+ Args:
157
+ batch (dict): The input audio features and reference waveform.
158
+
159
+ Returns:
160
+ tuple: Semantic tokens and global tokens.
161
+ """
162
+ feat = batch["feat"]
163
+ mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
164
+
165
+ z = self.encoder(feat.transpose(1, 2))
166
+ semantic_tokens = self.quantizer.tokenize(z)
167
+ global_tokens = self.speaker_encoder.tokenize(mel.transpose(1, 2))
168
+
169
+ return semantic_tokens, global_tokens
170
+
171
+ @torch.no_grad()
172
+ def detokenize(self, semantic_tokens, global_tokens):
173
+ """
174
+ Detokenizes the semantic and global tokens into a waveform.
175
+
176
+ Args:
177
+ semantic_tokens (tensor): Semantic tokens.
178
+ global_tokens (tensor): Global tokens.
179
+
180
+ Returns:
181
+ tensor: Reconstructed waveform.
182
+ """
183
+ z_q = self.quantizer.detokenize(semantic_tokens)
184
+ d_vector = self.speaker_encoder.detokenize(global_tokens)
185
+ x = self.prenet(z_q, d_vector)
186
+ x = x + d_vector.unsqueeze(-1)
187
+ wav_recon = self.decoder(x)
188
+
189
+ return wav_recon
190
+
191
+ def init_mel_transformer(self, config: Dict[str, Any]):
192
+ """
193
+ Initializes the MelSpectrogram transformer based on the provided configuration.
194
+
195
+ Args:
196
+ config (dict): Configuration parameters for MelSpectrogram.
197
+ """
198
+ import torchaudio.transforms as TT
199
+
200
+ self.mel_transformer = TT.MelSpectrogram(
201
+ config["sample_rate"],
202
+ config["n_fft"],
203
+ config["win_length"],
204
+ config["hop_length"],
205
+ config["mel_fmin"],
206
+ config["mel_fmax"],
207
+ n_mels=config["num_mels"],
208
+ power=1,
209
+ norm="slaney",
210
+ mel_scale="slaney",
211
+ )
212
+
213
+ def remove_weight_norm(self):
214
+ """Removes weight normalization from all layers."""
215
+ def _remove_weight_norm(m):
216
+ try:
217
+ torch.nn.utils.remove_weight_norm(m)
218
+ except ValueError:
219
+ pass # The module didn't have weight norm
220
+
221
+ self.apply(_remove_weight_norm)
222
+
223
+
224
+ # Test the model
225
+ if __name__ == "__main__":
226
+
227
+ config = load_config("pretrained_models/SparkTTS-0.5B/BiCodec/config.yaml")
228
+ model = BiCodec.load_from_checkpoint(
229
+ model_dir="pretrained_models/SparkTTS-0.5B/BiCodec",
230
+ )
231
+
232
+ # Generate random inputs for testing
233
+ duration = 0.96
234
+ x = torch.randn(20, 1, int(duration * 16000))
235
+ feat = torch.randn(20, int(duration * 50), 1024)
236
+ inputs = {"feat": feat, "wav": x, "ref_wav": x}
237
+
238
+ # Forward pass
239
+ outputs = model(inputs)
240
+ semantic_tokens, global_tokens = model.tokenize(inputs)
241
+ wav_recon = model.detokenize(semantic_tokens, global_tokens)
242
+
243
+ # Verify if the reconstruction matches
244
+ if torch.allclose(outputs["recons"].detach(), wav_recon):
245
+ print("Test successful")
246
+ else:
247
+ print("Test failed")
sparktts/modules/blocks/layers.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0
17
+
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ from torch.nn.utils import weight_norm
22
+
23
+
24
+ def WNConv1d(*args, **kwargs):
25
+ return weight_norm(nn.Conv1d(*args, **kwargs))
26
+
27
+
28
+ def WNConvTranspose1d(*args, **kwargs):
29
+ return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
30
+
31
+
32
+ # Scripting this brings model speed up 1.4x
33
+ @torch.jit.script
34
+ def snake(x, alpha):
35
+ shape = x.shape
36
+ x = x.reshape(shape[0], shape[1], -1)
37
+ x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
38
+ x = x.reshape(shape)
39
+ return x
40
+
41
+
42
+ class Snake1d(nn.Module):
43
+ def __init__(self, channels):
44
+ super().__init__()
45
+ self.alpha = nn.Parameter(torch.ones(1, channels, 1))
46
+
47
+ def forward(self, x):
48
+ return snake(x, self.alpha)
49
+
50
+
51
+ class ResidualUnit(nn.Module):
52
+ def __init__(self, dim: int = 16, dilation: int = 1):
53
+ super().__init__()
54
+ pad = ((7 - 1) * dilation) // 2
55
+ self.block = nn.Sequential(
56
+ Snake1d(dim),
57
+ WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
58
+ Snake1d(dim),
59
+ WNConv1d(dim, dim, kernel_size=1),
60
+ )
61
+
62
+ def forward(self, x):
63
+ y = self.block(x)
64
+ pad = (x.shape[-1] - y.shape[-1]) // 2
65
+ if pad > 0:
66
+ x = x[..., pad:-pad]
67
+ return x + y
68
+
69
+
70
+ def init_weights(m):
71
+ if isinstance(m, nn.Conv1d):
72
+ nn.init.trunc_normal_(m.weight, std=0.02)
73
+ nn.init.constant_(m.bias, 0)
sparktts/modules/blocks/samper.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+
21
+
22
+ class SamplingBlock(nn.Module):
23
+ """Sampling block for upsampling or downsampling"""
24
+
25
+ def __init__(
26
+ self,
27
+ dim: int,
28
+ groups: int = 1,
29
+ upsample_scale: int = 1,
30
+ downsample_scale: int = 1,
31
+ ) -> None:
32
+ """
33
+ Args:
34
+ dim: input dimension
35
+ groups: number of groups
36
+ upsample_scale: upsampling scale
37
+ downsample_scale: downsampling scale
38
+ """
39
+ super(SamplingBlock, self).__init__()
40
+
41
+ self.upsample_scale = upsample_scale
42
+ self.downsample_scale = downsample_scale
43
+
44
+ if self.upsample_scale > 1:
45
+ self.de_conv_upsampler = nn.Sequential(
46
+ nn.LeakyReLU(0.2),
47
+ nn.ConvTranspose1d(
48
+ dim,
49
+ dim,
50
+ kernel_size=upsample_scale * 2,
51
+ stride=upsample_scale,
52
+ padding=upsample_scale // 2 + upsample_scale % 2,
53
+ output_padding=upsample_scale % 2,
54
+ groups=groups,
55
+ ),
56
+ )
57
+
58
+ if self.downsample_scale > 1:
59
+ self.conv_downsampler = nn.Sequential(
60
+ nn.LeakyReLU(0.2),
61
+ nn.Conv1d(
62
+ dim,
63
+ dim,
64
+ kernel_size=2 * downsample_scale,
65
+ stride=downsample_scale,
66
+ padding=downsample_scale // 2 + downsample_scale % 2,
67
+ groups=groups,
68
+ ),
69
+ )
70
+
71
+ @staticmethod
72
+ def repeat_upsampler(x, upsample_scale):
73
+ return x.repeat_interleave(upsample_scale, dim=2)
74
+
75
+ @staticmethod
76
+ def skip_downsampler(x, downsample_scale):
77
+ return F.avg_pool1d(x, kernel_size=downsample_scale, stride=downsample_scale)
78
+
79
+ def forward(self, x):
80
+ x = x.transpose(1, 2)
81
+ if self.upsample_scale > 1:
82
+ repeat_res = self.repeat_upsampler(x, self.upsample_scale)
83
+ deconv_res = self.de_conv_upsampler(x)
84
+ upmerge_res = repeat_res + deconv_res
85
+ else:
86
+ upmerge_res = x
87
+ repeat_res = x
88
+
89
+ if self.downsample_scale > 1:
90
+ conv_res = self.conv_downsampler(upmerge_res)
91
+ skip2_res = self.skip_downsampler(upmerge_res, self.downsample_scale)
92
+ skip1_res = self.skip_downsampler(repeat_res, self.downsample_scale)
93
+ else:
94
+ conv_res = upmerge_res
95
+ skip2_res = upmerge_res
96
+ skip1_res = repeat_res
97
+
98
+ final_res = conv_res + skip1_res + skip2_res
99
+
100
+ return final_res
101
+
102
+
103
+ # test
104
+ if __name__ == "__main__":
105
+ test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
106
+ model = SamplingBlock(1024, 1024, upsample_scale=2)
107
+ model_down = SamplingBlock(1024, 1024, downsample_scale=2)
108
+ output = model(test_input)
109
+ output_down = model_down(test_input)
110
+ print("shape after upsample * 2", output.shape) # torch.Size([8, 1024, 100])
111
+ print("shape after downsample * 2", output_down.shape) # torch.Size([8, 1024, 25])
112
+ if output.shape == torch.Size([8, 1024, 100]) and output_down.shape == torch.Size(
113
+ [8, 1024, 25]
114
+ ):
115
+ print("test successful")
sparktts/modules/blocks/vocos.py ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from typing import Tuple
21
+ from torch.nn.utils import weight_norm, remove_weight_norm
22
+
23
+ from typing import Optional
24
+
25
+
26
+ class ConvNeXtBlock(nn.Module):
27
+ """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
28
+
29
+ Args:
30
+ dim (int): Number of input channels.
31
+ intermediate_dim (int): Dimensionality of the intermediate layer.
32
+ layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
33
+ Defaults to None.
34
+ adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
35
+ None means non-conditional LayerNorm. Defaults to None.
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ dim: int,
41
+ intermediate_dim: int,
42
+ layer_scale_init_value: float,
43
+ condition_dim: Optional[int] = None,
44
+ ):
45
+ super().__init__()
46
+ self.dwconv = nn.Conv1d(
47
+ dim, dim, kernel_size=7, padding=3, groups=dim
48
+ ) # depthwise conv
49
+ self.adanorm = condition_dim is not None
50
+ if condition_dim:
51
+ self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
52
+ else:
53
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
54
+ self.pwconv1 = nn.Linear(
55
+ dim, intermediate_dim
56
+ ) # pointwise/1x1 convs, implemented with linear layers
57
+ self.act = nn.GELU()
58
+ self.pwconv2 = nn.Linear(intermediate_dim, dim)
59
+ self.gamma = (
60
+ nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
61
+ if layer_scale_init_value > 0
62
+ else None
63
+ )
64
+
65
+ def forward(
66
+ self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
67
+ ) -> torch.Tensor:
68
+ residual = x
69
+ x = self.dwconv(x)
70
+ x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
71
+ if self.adanorm:
72
+ assert cond_embedding_id is not None
73
+ x = self.norm(x, cond_embedding_id)
74
+ else:
75
+ x = self.norm(x)
76
+ x = self.pwconv1(x)
77
+ x = self.act(x)
78
+ x = self.pwconv2(x)
79
+ if self.gamma is not None:
80
+ x = self.gamma * x
81
+ x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
82
+
83
+ x = residual + x
84
+ return x
85
+
86
+
87
+ class AdaLayerNorm(nn.Module):
88
+ """
89
+ Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
90
+
91
+ Args:
92
+ condition_dim (int): Dimension of the condition.
93
+ embedding_dim (int): Dimension of the embeddings.
94
+ """
95
+
96
+ def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6):
97
+ super().__init__()
98
+ self.eps = eps
99
+ self.dim = embedding_dim
100
+ self.scale = nn.Linear(condition_dim, embedding_dim)
101
+ self.shift = nn.Linear(condition_dim, embedding_dim)
102
+ torch.nn.init.ones_(self.scale.weight)
103
+ torch.nn.init.zeros_(self.shift.weight)
104
+
105
+ def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor:
106
+ scale = self.scale(cond_embedding)
107
+ shift = self.shift(cond_embedding)
108
+ x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
109
+ x = x * scale.unsqueeze(1) + shift.unsqueeze(1)
110
+ return x
111
+
112
+
113
+ class ResBlock1(nn.Module):
114
+ """
115
+ ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
116
+ but without upsampling layers.
117
+
118
+ Args:
119
+ dim (int): Number of input channels.
120
+ kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
121
+ dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
122
+ Defaults to (1, 3, 5).
123
+ lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
124
+ Defaults to 0.1.
125
+ layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
126
+ Defaults to None.
127
+ """
128
+
129
+ def __init__(
130
+ self,
131
+ dim: int,
132
+ kernel_size: int = 3,
133
+ dilation: Tuple[int, int, int] = (1, 3, 5),
134
+ lrelu_slope: float = 0.1,
135
+ layer_scale_init_value: Optional[float] = None,
136
+ ):
137
+ super().__init__()
138
+ self.lrelu_slope = lrelu_slope
139
+ self.convs1 = nn.ModuleList(
140
+ [
141
+ weight_norm(
142
+ nn.Conv1d(
143
+ dim,
144
+ dim,
145
+ kernel_size,
146
+ 1,
147
+ dilation=dilation[0],
148
+ padding=self.get_padding(kernel_size, dilation[0]),
149
+ )
150
+ ),
151
+ weight_norm(
152
+ nn.Conv1d(
153
+ dim,
154
+ dim,
155
+ kernel_size,
156
+ 1,
157
+ dilation=dilation[1],
158
+ padding=self.get_padding(kernel_size, dilation[1]),
159
+ )
160
+ ),
161
+ weight_norm(
162
+ nn.Conv1d(
163
+ dim,
164
+ dim,
165
+ kernel_size,
166
+ 1,
167
+ dilation=dilation[2],
168
+ padding=self.get_padding(kernel_size, dilation[2]),
169
+ )
170
+ ),
171
+ ]
172
+ )
173
+
174
+ self.convs2 = nn.ModuleList(
175
+ [
176
+ weight_norm(
177
+ nn.Conv1d(
178
+ dim,
179
+ dim,
180
+ kernel_size,
181
+ 1,
182
+ dilation=1,
183
+ padding=self.get_padding(kernel_size, 1),
184
+ )
185
+ ),
186
+ weight_norm(
187
+ nn.Conv1d(
188
+ dim,
189
+ dim,
190
+ kernel_size,
191
+ 1,
192
+ dilation=1,
193
+ padding=self.get_padding(kernel_size, 1),
194
+ )
195
+ ),
196
+ weight_norm(
197
+ nn.Conv1d(
198
+ dim,
199
+ dim,
200
+ kernel_size,
201
+ 1,
202
+ dilation=1,
203
+ padding=self.get_padding(kernel_size, 1),
204
+ )
205
+ ),
206
+ ]
207
+ )
208
+
209
+ self.gamma = nn.ParameterList(
210
+ [
211
+ (
212
+ nn.Parameter(
213
+ layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
214
+ )
215
+ if layer_scale_init_value is not None
216
+ else None
217
+ ),
218
+ (
219
+ nn.Parameter(
220
+ layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
221
+ )
222
+ if layer_scale_init_value is not None
223
+ else None
224
+ ),
225
+ (
226
+ nn.Parameter(
227
+ layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
228
+ )
229
+ if layer_scale_init_value is not None
230
+ else None
231
+ ),
232
+ ]
233
+ )
234
+
235
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
236
+ for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
237
+ xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
238
+ xt = c1(xt)
239
+ xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
240
+ xt = c2(xt)
241
+ if gamma is not None:
242
+ xt = gamma * xt
243
+ x = xt + x
244
+ return x
245
+
246
+ def remove_weight_norm(self):
247
+ for l in self.convs1:
248
+ remove_weight_norm(l)
249
+ for l in self.convs2:
250
+ remove_weight_norm(l)
251
+
252
+ @staticmethod
253
+ def get_padding(kernel_size: int, dilation: int = 1) -> int:
254
+ return int((kernel_size * dilation - dilation) / 2)
255
+
256
+
257
+ class Backbone(nn.Module):
258
+ """Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
259
+
260
+ def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
261
+ """
262
+ Args:
263
+ x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
264
+ C denotes output features, and L is the sequence length.
265
+
266
+ Returns:
267
+ Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
268
+ and H denotes the model dimension.
269
+ """
270
+ raise NotImplementedError("Subclasses must implement the forward method.")
271
+
272
+
273
+ class VocosBackbone(Backbone):
274
+ """
275
+ Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
276
+
277
+ Args:
278
+ input_channels (int): Number of input features channels.
279
+ dim (int): Hidden dimension of the model.
280
+ intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
281
+ num_layers (int): Number of ConvNeXtBlock layers.
282
+ layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
283
+ adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
284
+ None means non-conditional model. Defaults to None.
285
+ """
286
+
287
+ def __init__(
288
+ self,
289
+ input_channels: int,
290
+ dim: int,
291
+ intermediate_dim: int,
292
+ num_layers: int,
293
+ layer_scale_init_value: Optional[float] = None,
294
+ condition_dim: Optional[int] = None,
295
+ ):
296
+ super().__init__()
297
+ self.input_channels = input_channels
298
+ self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
299
+ self.adanorm = condition_dim is not None
300
+ if condition_dim:
301
+ self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
302
+ else:
303
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
304
+ layer_scale_init_value = layer_scale_init_value or 1 / num_layers
305
+ self.convnext = nn.ModuleList(
306
+ [
307
+ ConvNeXtBlock(
308
+ dim=dim,
309
+ intermediate_dim=intermediate_dim,
310
+ layer_scale_init_value=layer_scale_init_value,
311
+ condition_dim=condition_dim,
312
+ )
313
+ for _ in range(num_layers)
314
+ ]
315
+ )
316
+ self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
317
+ self.apply(self._init_weights)
318
+
319
+ def _init_weights(self, m):
320
+ if isinstance(m, (nn.Conv1d, nn.Linear)):
321
+ nn.init.trunc_normal_(m.weight, std=0.02)
322
+ nn.init.constant_(m.bias, 0)
323
+
324
+ def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor:
325
+ x = self.embed(x)
326
+ if self.adanorm:
327
+ assert condition is not None
328
+ x = self.norm(x.transpose(1, 2), condition)
329
+ else:
330
+ x = self.norm(x.transpose(1, 2))
331
+ x = x.transpose(1, 2)
332
+ for conv_block in self.convnext:
333
+ x = conv_block(x, condition)
334
+ x = self.final_layer_norm(x.transpose(1, 2))
335
+ return x
336
+
337
+
338
+ class VocosResNetBackbone(Backbone):
339
+ """
340
+ Vocos backbone module built with ResBlocks.
341
+
342
+ Args:
343
+ input_channels (int): Number of input features channels.
344
+ dim (int): Hidden dimension of the model.
345
+ num_blocks (int): Number of ResBlock1 blocks.
346
+ layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
347
+ """
348
+
349
+ def __init__(
350
+ self,
351
+ input_channels,
352
+ dim,
353
+ num_blocks,
354
+ layer_scale_init_value=None,
355
+ ):
356
+ super().__init__()
357
+ self.input_channels = input_channels
358
+ self.embed = weight_norm(
359
+ nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
360
+ )
361
+ layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
362
+ self.resnet = nn.Sequential(
363
+ *[
364
+ ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
365
+ for _ in range(num_blocks)
366
+ ]
367
+ )
368
+
369
+ def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
370
+ x = self.embed(x)
371
+ x = self.resnet(x)
372
+ x = x.transpose(1, 2)
373
+ return x
sparktts/modules/encoder_decoder/feat_decoder.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from typing import List
21
+
22
+ from sparktts.modules.blocks.vocos import VocosBackbone
23
+ from sparktts.modules.blocks.samper import SamplingBlock
24
+
25
+
26
+ class Decoder(nn.Module):
27
+ """Decoder module with convnext and upsampling blocks
28
+
29
+ Args:
30
+ sample_ratios (List[int]): sample ratios
31
+ example: [2, 2] means downsample by 2x and then upsample by 2x
32
+ """
33
+
34
+ def __init__(
35
+ self,
36
+ input_channels: int,
37
+ vocos_dim: int,
38
+ vocos_intermediate_dim: int,
39
+ vocos_num_layers: int,
40
+ out_channels: int,
41
+ condition_dim: int = None,
42
+ sample_ratios: List[int] = [1, 1],
43
+ use_tanh_at_final: bool = False,
44
+ ):
45
+ super().__init__()
46
+
47
+ self.linear_pre = nn.Linear(input_channels, vocos_dim)
48
+ modules = [
49
+ nn.Sequential(
50
+ SamplingBlock(
51
+ dim=vocos_dim,
52
+ groups=vocos_dim,
53
+ upsample_scale=ratio,
54
+ ),
55
+ VocosBackbone(
56
+ input_channels=vocos_dim,
57
+ dim=vocos_dim,
58
+ intermediate_dim=vocos_intermediate_dim,
59
+ num_layers=2,
60
+ condition_dim=None,
61
+ ),
62
+ )
63
+ for ratio in sample_ratios
64
+ ]
65
+
66
+ self.downsample = nn.Sequential(*modules)
67
+
68
+ self.vocos_backbone = VocosBackbone(
69
+ input_channels=vocos_dim,
70
+ dim=vocos_dim,
71
+ intermediate_dim=vocos_intermediate_dim,
72
+ num_layers=vocos_num_layers,
73
+ condition_dim=condition_dim,
74
+ )
75
+ self.linear = nn.Linear(vocos_dim, out_channels)
76
+ self.use_tanh_at_final = use_tanh_at_final
77
+
78
+ def forward(self, x: torch.Tensor, c: torch.Tensor = None):
79
+ """encoder forward.
80
+
81
+ Args:
82
+ x (torch.Tensor): (batch_size, input_channels, length)
83
+
84
+ Returns:
85
+ x (torch.Tensor): (batch_size, encode_channels, length)
86
+ """
87
+ x = self.linear_pre(x.transpose(1, 2))
88
+ x = self.downsample(x).transpose(1, 2)
89
+ x = self.vocos_backbone(x, condition=c)
90
+ x = self.linear(x).transpose(1, 2)
91
+ if self.use_tanh_at_final:
92
+ x = torch.tanh(x)
93
+
94
+ return x
95
+
96
+
97
+ # test
98
+ if __name__ == "__main__":
99
+ test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
100
+ condition = torch.randn(8, 256)
101
+ decoder = Decoder(
102
+ input_channels=1024,
103
+ vocos_dim=384,
104
+ vocos_intermediate_dim=2048,
105
+ vocos_num_layers=12,
106
+ out_channels=256,
107
+ condition_dim=256,
108
+ sample_ratios=[2, 2],
109
+ )
110
+ output = decoder(test_input, condition)
111
+ print(output.shape) # torch.Size([8, 256, 200])
112
+ if output.shape == torch.Size([8, 256, 200]):
113
+ print("Decoder test passed")
114
+ else:
115
+ print("Decoder test failed")
sparktts/modules/encoder_decoder/feat_encoder.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from typing import List
21
+
22
+ from sparktts.modules.blocks.vocos import VocosBackbone
23
+ from sparktts.modules.blocks.samper import SamplingBlock
24
+
25
+
26
+ class Encoder(nn.Module):
27
+ """Encoder module with convnext and downsampling blocks"""
28
+
29
+ def __init__(
30
+ self,
31
+ input_channels: int,
32
+ vocos_dim: int,
33
+ vocos_intermediate_dim: int,
34
+ vocos_num_layers: int,
35
+ out_channels: int,
36
+ sample_ratios: List[int] = [1, 1],
37
+ ):
38
+ super().__init__()
39
+ """
40
+ Encoder module with VocosBackbone and sampling blocks.
41
+
42
+ Args:
43
+ sample_ratios (List[int]): sample ratios
44
+ example: [2, 2] means downsample by 2x and then upsample by 2x
45
+ """
46
+ self.encoder = VocosBackbone(
47
+ input_channels=input_channels,
48
+ dim=vocos_dim,
49
+ intermediate_dim=vocos_intermediate_dim,
50
+ num_layers=vocos_num_layers,
51
+ condition_dim=None,
52
+ )
53
+
54
+ modules = [
55
+ nn.Sequential(
56
+ SamplingBlock(
57
+ dim=vocos_dim,
58
+ groups=vocos_dim,
59
+ downsample_scale=ratio,
60
+ ),
61
+ VocosBackbone(
62
+ input_channels=vocos_dim,
63
+ dim=vocos_dim,
64
+ intermediate_dim=vocos_intermediate_dim,
65
+ num_layers=2,
66
+ condition_dim=None,
67
+ ),
68
+ )
69
+ for ratio in sample_ratios
70
+ ]
71
+
72
+ self.downsample = nn.Sequential(*modules)
73
+
74
+ self.project = nn.Linear(vocos_dim, out_channels)
75
+
76
+ def forward(self, x: torch.Tensor, *args):
77
+ """
78
+ Args:
79
+ x (torch.Tensor): (batch_size, input_channels, length)
80
+
81
+ Returns:
82
+ x (torch.Tensor): (batch_size, encode_channels, length)
83
+ """
84
+ x = self.encoder(x)
85
+ x = self.downsample(x)
86
+ x = self.project(x)
87
+ return x.transpose(1, 2)
88
+
89
+
90
+ # test
91
+ if __name__ == "__main__":
92
+ test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
93
+ encoder = Encoder(
94
+ input_channels=1024,
95
+ vocos_dim=384,
96
+ vocos_intermediate_dim=2048,
97
+ vocos_num_layers=12,
98
+ out_channels=256,
99
+ sample_ratios=[2, 2],
100
+ )
101
+
102
+ output = encoder(test_input)
103
+ print(output.shape) # torch.Size([8, 256, 12])
104
+ if output.shape == torch.Size([8, 256, 12]):
105
+ print("test successful")
sparktts/modules/encoder_decoder/wave_generator.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Xinsheng Wang ([email protected])
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0
16
+
17
+
18
+ import torch.nn as nn
19
+
20
+ from sparktts.modules.blocks.layers import (
21
+ Snake1d,
22
+ WNConv1d,
23
+ ResidualUnit,
24
+ WNConvTranspose1d,
25
+ init_weights,
26
+ )
27
+
28
+
29
+ class DecoderBlock(nn.Module):
30
+ def __init__(
31
+ self,
32
+ input_dim: int = 16,
33
+ output_dim: int = 8,
34
+ kernel_size: int = 2,
35
+ stride: int = 1,
36
+ ):
37
+ super().__init__()
38
+ self.block = nn.Sequential(
39
+ Snake1d(input_dim),
40
+ WNConvTranspose1d(
41
+ input_dim,
42
+ output_dim,
43
+ kernel_size=kernel_size,
44
+ stride=stride,
45
+ padding=(kernel_size - stride) // 2,
46
+ ),
47
+ ResidualUnit(output_dim, dilation=1),
48
+ ResidualUnit(output_dim, dilation=3),
49
+ ResidualUnit(output_dim, dilation=9),
50
+ )
51
+
52
+ def forward(self, x):
53
+ return self.block(x)
54
+
55
+
56
+ class WaveGenerator(nn.Module):
57
+ def __init__(
58
+ self,
59
+ input_channel,
60
+ channels,
61
+ rates,
62
+ kernel_sizes,
63
+ d_out: int = 1,
64
+ ):
65
+ super().__init__()
66
+
67
+ # Add first conv layer
68
+ layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)]
69
+
70
+ # Add upsampling + MRF blocks
71
+ for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)):
72
+ input_dim = channels // 2**i
73
+ output_dim = channels // 2 ** (i + 1)
74
+ layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)]
75
+
76
+ # Add final conv layer
77
+ layers += [
78
+ Snake1d(output_dim),
79
+ WNConv1d(output_dim, d_out, kernel_size=7, padding=3),
80
+ nn.Tanh(),
81
+ ]
82
+
83
+ self.model = nn.Sequential(*layers)
84
+
85
+ self.apply(init_weights)
86
+
87
+ def forward(self, x):
88
+ return self.model(x)
sparktts/modules/fsq/finite_scalar_quantization.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
3
+ Code adapted from Jax version in Appendix A.1
4
+ """
5
+
6
+ from __future__ import annotations
7
+ from functools import wraps, partial
8
+ from contextlib import nullcontext
9
+ from typing import List, Tuple
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ from torch.nn import Module
14
+ from torch import Tensor, int32
15
+ from torch.amp import autocast
16
+
17
+ from einops import rearrange, pack, unpack
18
+
19
+ # helper functions
20
+
21
+
22
+ def exists(v):
23
+ return v is not None
24
+
25
+
26
+ def default(*args):
27
+ for arg in args:
28
+ if exists(arg):
29
+ return arg
30
+ return None
31
+
32
+
33
+ def maybe(fn):
34
+ @wraps(fn)
35
+ def inner(x, *args, **kwargs):
36
+ if not exists(x):
37
+ return x
38
+ return fn(x, *args, **kwargs)
39
+
40
+ return inner
41
+
42
+
43
+ def pack_one(t, pattern):
44
+ return pack([t], pattern)
45
+
46
+
47
+ def unpack_one(t, ps, pattern):
48
+ return unpack(t, ps, pattern)[0]
49
+
50
+
51
+ # tensor helpers
52
+
53
+
54
+ def round_ste(z: Tensor) -> Tensor:
55
+ """Round with straight through gradients."""
56
+ zhat = z.round()
57
+ return z + (zhat - z).detach()
58
+
59
+
60
+ # main class
61
+
62
+
63
+ class FSQ(Module):
64
+ def __init__(
65
+ self,
66
+ levels: List[int],
67
+ dim: int | None = None,
68
+ num_codebooks=1,
69
+ keep_num_codebooks_dim: bool | None = None,
70
+ scale: float | None = None,
71
+ allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
72
+ channel_first: bool = False,
73
+ projection_has_bias: bool = True,
74
+ return_indices=True,
75
+ force_quantization_f32=True,
76
+ ):
77
+ super().__init__()
78
+ _levels = torch.tensor(levels, dtype=int32)
79
+ self.register_buffer("_levels", _levels, persistent=False)
80
+
81
+ _basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
82
+ self.register_buffer("_basis", _basis, persistent=False)
83
+
84
+ self.scale = scale
85
+
86
+ codebook_dim = len(levels)
87
+ self.codebook_dim = codebook_dim
88
+
89
+ effective_codebook_dim = codebook_dim * num_codebooks
90
+ self.num_codebooks = num_codebooks
91
+ self.effective_codebook_dim = effective_codebook_dim
92
+
93
+ keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
94
+ assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
95
+ self.keep_num_codebooks_dim = keep_num_codebooks_dim
96
+
97
+ self.dim = default(dim, len(_levels) * num_codebooks)
98
+
99
+ self.channel_first = channel_first
100
+
101
+ has_projections = self.dim != effective_codebook_dim
102
+ self.project_in = (
103
+ nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias)
104
+ if has_projections
105
+ else nn.Identity()
106
+ )
107
+ self.project_out = (
108
+ nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias)
109
+ if has_projections
110
+ else nn.Identity()
111
+ )
112
+
113
+ self.has_projections = has_projections
114
+
115
+ self.return_indices = return_indices
116
+ if return_indices:
117
+ self.codebook_size = self._levels.prod().item()
118
+ implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
119
+ self.register_buffer(
120
+ "implicit_codebook", implicit_codebook, persistent=False
121
+ )
122
+
123
+ self.allowed_dtypes = allowed_dtypes
124
+ self.force_quantization_f32 = force_quantization_f32
125
+
126
+ def bound(self, z, eps: float = 1e-3):
127
+ """Bound `z`, an array of shape (..., d)."""
128
+ half_l = (self._levels - 1) * (1 + eps) / 2
129
+ offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
130
+ shift = (offset / half_l).atanh()
131
+ return (z + shift).tanh() * half_l - offset
132
+
133
+ def quantize(self, z):
134
+ """Quantizes z, returns quantized zhat, same shape as z."""
135
+ quantized = round_ste(self.bound(z))
136
+ half_width = self._levels // 2 # Renormalize to [-1, 1].
137
+ return quantized / half_width
138
+
139
+ def _scale_and_shift(self, zhat_normalized):
140
+ half_width = self._levels // 2
141
+ return (zhat_normalized * half_width) + half_width
142
+
143
+ def _scale_and_shift_inverse(self, zhat):
144
+ half_width = self._levels // 2
145
+ return (zhat - half_width) / half_width
146
+
147
+ def _indices_to_codes(self, indices):
148
+ level_indices = self.indices_to_level_indices(indices)
149
+ codes = self._scale_and_shift_inverse(level_indices)
150
+ return codes
151
+
152
+ def codes_to_indices(self, zhat):
153
+ """Converts a `code` to an index in the codebook."""
154
+ assert zhat.shape[-1] == self.codebook_dim
155
+ zhat = self._scale_and_shift(zhat)
156
+ return (zhat * self._basis).sum(dim=-1).to(int32)
157
+
158
+ def indices_to_level_indices(self, indices):
159
+ """Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings"""
160
+ indices = rearrange(indices, "... -> ... 1")
161
+ codes_non_centered = (indices // self._basis) % self._levels
162
+ return codes_non_centered
163
+
164
+ def indices_to_codes(self, indices):
165
+ """Inverse of `codes_to_indices`."""
166
+ assert exists(indices)
167
+
168
+ is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
169
+
170
+ codes = self._indices_to_codes(indices)
171
+
172
+ if self.keep_num_codebooks_dim:
173
+ codes = rearrange(codes, "... c d -> ... (c d)")
174
+
175
+ codes = self.project_out(codes)
176
+
177
+ if is_img_or_video or self.channel_first:
178
+ codes = rearrange(codes, "b ... d -> b d ...")
179
+
180
+ return codes
181
+
182
+ def forward(self, z):
183
+ """
184
+ einstein notation
185
+ b - batch
186
+ n - sequence (or flattened spatial dimensions)
187
+ d - feature dimension
188
+ c - number of codebook dim
189
+ """
190
+
191
+ is_img_or_video = z.ndim >= 4
192
+ need_move_channel_last = is_img_or_video or self.channel_first
193
+
194
+ # standardize image or video into (batch, seq, dimension)
195
+
196
+ if need_move_channel_last:
197
+ z = rearrange(z, "b d ... -> b ... d")
198
+ z, ps = pack_one(z, "b * d")
199
+
200
+ assert (
201
+ z.shape[-1] == self.dim
202
+ ), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
203
+
204
+ z = self.project_in(z)
205
+
206
+ z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
207
+
208
+ # whether to force quantization step to be full precision or not
209
+
210
+ force_f32 = self.force_quantization_f32
211
+ quantization_context = (
212
+ partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext
213
+ )
214
+
215
+ with quantization_context():
216
+ orig_dtype = z.dtype
217
+
218
+ if force_f32 and orig_dtype not in self.allowed_dtypes:
219
+ z = z.float()
220
+
221
+ codes = self.quantize(z)
222
+
223
+ # returning indices could be optional
224
+
225
+ indices = None
226
+
227
+ if self.return_indices:
228
+ indices = self.codes_to_indices(codes)
229
+
230
+ codes = rearrange(codes, "b n c d -> b n (c d)")
231
+
232
+ codes = codes.type(orig_dtype)
233
+
234
+ # project out
235
+
236
+ out = self.project_out(codes)
237
+
238
+ # reconstitute image or video dimensions
239
+
240
+ if need_move_channel_last:
241
+ out = unpack_one(out, ps, "b * d")
242
+ out = rearrange(out, "b ... d -> b d ...")
243
+
244
+ indices = maybe(unpack_one)(indices, ps, "b * c")
245
+
246
+ if not self.keep_num_codebooks_dim and self.return_indices:
247
+ indices = maybe(rearrange)(indices, "... 1 -> ...")
248
+
249
+ # return quantized output and indices
250
+
251
+ return out, indices
sparktts/modules/fsq/residual_fsq.py ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import torch.distributed as dist
5
+
6
+ from typing import List
7
+ from torch import nn
8
+ from torch.nn import Module
9
+ from torch.amp import autocast
10
+ from einx import get_at
11
+ from einops import rearrange, reduce, pack, unpack
12
+
13
+ from sparktts.modules.fsq.finite_scalar_quantization import FSQ
14
+
15
+
16
+ def exists(val):
17
+ return val is not None
18
+
19
+
20
+ def first(l):
21
+ return l[0]
22
+
23
+
24
+ def default(val, d):
25
+ return val if exists(val) else d
26
+
27
+
28
+ def round_up_multiple(num, mult):
29
+ return ceil(num / mult) * mult
30
+
31
+
32
+ # distributed helpers
33
+
34
+
35
+ def is_distributed():
36
+ return dist.is_initialized() and dist.get_world_size() > 1
37
+
38
+
39
+ def get_maybe_sync_seed(device, max_size=10_000):
40
+ rand_int = torch.randint(0, max_size, (), device=device)
41
+
42
+ if is_distributed():
43
+ dist.all_reduce(rand_int)
44
+
45
+ return rand_int.item()
46
+
47
+
48
+ class ResidualFSQ(Module):
49
+ """Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf"""
50
+
51
+ def __init__(
52
+ self,
53
+ *,
54
+ levels: List[int],
55
+ num_quantizers,
56
+ dim=None,
57
+ is_channel_first=False,
58
+ quantize_dropout=False,
59
+ quantize_dropout_cutoff_index=0,
60
+ quantize_dropout_multiple_of=1,
61
+ **kwargs,
62
+ ):
63
+ super().__init__()
64
+ codebook_dim = len(levels)
65
+ dim = default(dim, codebook_dim)
66
+
67
+ requires_projection = codebook_dim != dim
68
+ self.project_in = (
69
+ nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
70
+ )
71
+ self.project_out = (
72
+ nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
73
+ )
74
+ self.has_projections = requires_projection
75
+
76
+ self.is_channel_first = is_channel_first
77
+ self.num_quantizers = num_quantizers
78
+
79
+ self.levels = levels
80
+ self.layers = nn.ModuleList([])
81
+
82
+ levels_tensor = torch.Tensor(levels)
83
+
84
+ scales = []
85
+
86
+ for ind in range(num_quantizers):
87
+ scales.append((levels_tensor - 1) ** -ind)
88
+
89
+ fsq = FSQ(levels=levels, dim=codebook_dim, **kwargs)
90
+
91
+ self.layers.append(fsq)
92
+
93
+ assert all([not fsq.has_projections for fsq in self.layers])
94
+
95
+ self.codebook_size = self.layers[0].codebook_size
96
+
97
+ self.register_buffer("scales", torch.stack(scales), persistent=False)
98
+
99
+ self.quantize_dropout = quantize_dropout and num_quantizers > 1
100
+
101
+ assert quantize_dropout_cutoff_index >= 0
102
+
103
+ self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index
104
+ self.quantize_dropout_multiple_of = quantize_dropout_multiple_of # encodec paper proposes structured dropout, believe this was set to 4
105
+
106
+ @property
107
+ def codebooks(self):
108
+ codebooks = [layer.implicit_codebook for layer in self.layers]
109
+ codebooks = torch.stack(codebooks, dim=0)
110
+ return codebooks
111
+
112
+ def get_codes_from_indices(self, indices):
113
+
114
+ batch, quantize_dim = indices.shape[0], indices.shape[-1]
115
+
116
+ # may also receive indices in the shape of 'b h w q' (accept_image_fmap)
117
+
118
+ indices, ps = pack([indices], "b * q")
119
+
120
+ # because of quantize dropout, one can pass in indices that are coarse
121
+ # and the network should be able to reconstruct
122
+
123
+ if quantize_dim < self.num_quantizers:
124
+ assert (
125
+ self.quantize_dropout > 0.0
126
+ ), "quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations"
127
+ indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1)
128
+
129
+ # take care of quantizer dropout
130
+
131
+ mask = indices == -1
132
+ indices = indices.masked_fill(
133
+ mask, 0
134
+ ) # have it fetch a dummy code to be masked out later
135
+
136
+ all_codes = get_at("q [c] d, b n q -> q b n d", self.codebooks, indices)
137
+
138
+ # mask out any codes that were dropout-ed
139
+
140
+ all_codes = all_codes.masked_fill(rearrange(mask, "b n q -> q b n 1"), 0.0)
141
+
142
+ # scale the codes
143
+
144
+ scales = rearrange(self.scales, "q d -> q 1 1 d")
145
+ all_codes = all_codes * scales
146
+
147
+ # if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
148
+
149
+ (all_codes,) = unpack(all_codes, ps, "q b * d")
150
+
151
+ return all_codes
152
+
153
+ def get_output_from_indices(self, indices):
154
+ codes = self.get_codes_from_indices(indices)
155
+ codes_summed = reduce(codes, "q ... -> ...", "sum")
156
+ return self.project_out(codes_summed)
157
+
158
+ def forward(self, x, return_all_codes=False, rand_quantize_dropout_fixed_seed=None):
159
+ num_quant, quant_dropout_multiple_of, device = (
160
+ self.num_quantizers,
161
+ self.quantize_dropout_multiple_of,
162
+ x.device,
163
+ )
164
+
165
+ # handle channel first
166
+
167
+ if self.is_channel_first:
168
+ x = rearrange(x, "b d ... -> b ... d")
169
+ x, ps = pack([x], "b * d")
170
+
171
+ # maybe project in
172
+
173
+ x = self.project_in(x)
174
+
175
+ quantized_out = 0.0
176
+ residual = x
177
+
178
+ all_indices = []
179
+
180
+ should_quantize_dropout = self.training and self.quantize_dropout
181
+
182
+ # sample a layer index at which to dropout further residual quantization
183
+ # also prepare null indices
184
+
185
+ if should_quantize_dropout:
186
+
187
+ # check if seed is manually passed in
188
+
189
+ if not exists(rand_quantize_dropout_fixed_seed):
190
+ rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device)
191
+
192
+ rand = random.Random(rand_quantize_dropout_fixed_seed)
193
+
194
+ rand_quantize_dropout_index = rand.randrange(
195
+ self.quantize_dropout_cutoff_index, num_quant
196
+ )
197
+
198
+ if quant_dropout_multiple_of != 1:
199
+ rand_quantize_dropout_index = (
200
+ round_up_multiple(
201
+ rand_quantize_dropout_index + 1, quant_dropout_multiple_of
202
+ )
203
+ - 1
204
+ )
205
+
206
+ null_indices = torch.full(
207
+ x.shape[:2], -1.0, device=device, dtype=torch.long
208
+ )
209
+
210
+ # go through the layers
211
+
212
+ with autocast("cuda", enabled=False):
213
+ for quantizer_index, (layer, scale) in enumerate(
214
+ zip(self.layers, self.scales)
215
+ ):
216
+
217
+ if (
218
+ should_quantize_dropout
219
+ and quantizer_index > rand_quantize_dropout_index
220
+ ):
221
+ all_indices.append(null_indices)
222
+ continue
223
+
224
+ quantized, indices = layer(residual / scale)
225
+
226
+ quantized = quantized * scale
227
+
228
+ residual = residual - quantized.detach()
229
+ quantized_out = quantized_out + quantized
230
+
231
+ all_indices.append(indices)
232
+
233
+ # project out, if needed
234
+
235
+ quantized_out = self.project_out(quantized_out)
236
+
237
+ # stack all indices
238
+
239
+ all_indices = torch.stack(all_indices, dim=-1)
240
+
241
+ # channel first out
242
+
243
+ if self.is_channel_first:
244
+ (quantized_out,) = unpack(quantized_out, ps, "b * d")
245
+ (all_indices,) = unpack(all_indices, ps, "b * d")
246
+
247
+ quantized_out = rearrange(quantized_out, "b ... d -> b d ...")
248
+ all_indices = rearrange(all_indices, "b ... d -> b d ...")
249
+
250
+ # return
251
+
252
+ ret = (quantized_out, all_indices)
253
+
254
+ if not return_all_codes:
255
+ return ret
256
+
257
+ # whether to return all codes from all codebooks across layers
258
+
259
+ all_codes = self.get_codes_from_indices(all_indices)
260
+
261
+ # will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
262
+
263
+ return (*ret, all_codes)
264
+
265
+
266
+ # grouped residual fsq
267
+
268
+
269
+ class GroupedResidualFSQ(Module):
270
+ def __init__(self, *, dim, groups=1, accept_image_fmap=False, **kwargs):
271
+ super().__init__()
272
+ self.dim = dim
273
+ self.groups = groups
274
+ assert (dim % groups) == 0
275
+ dim_per_group = dim // groups
276
+
277
+ self.accept_image_fmap = accept_image_fmap
278
+
279
+ self.rvqs = nn.ModuleList([])
280
+
281
+ for _ in range(groups):
282
+ self.rvqs.append(ResidualFSQ(dim=dim_per_group, **kwargs))
283
+
284
+ self.codebook_size = self.rvqs[0].codebook_size
285
+
286
+ @property
287
+ def codebooks(self):
288
+ return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs))
289
+
290
+ @property
291
+ def split_dim(self):
292
+ return 1 if self.accept_image_fmap else -1
293
+
294
+ def get_codes_from_indices(self, indices):
295
+ codes = tuple(
296
+ rvq.get_codes_from_indices(chunk_indices)
297
+ for rvq, chunk_indices in zip(self.rvqs, indices)
298
+ )
299
+ return torch.stack(codes)
300
+
301
+ def get_output_from_indices(self, indices):
302
+ outputs = tuple(
303
+ rvq.get_output_from_indices(chunk_indices)
304
+ for rvq, chunk_indices in zip(self.rvqs, indices)
305
+ )
306
+ return torch.cat(outputs, dim=self.split_dim)
307
+
308
+ def forward(self, x, return_all_codes=False):
309
+ shape, split_dim, device = x.shape, self.split_dim, x.device
310
+ assert shape[split_dim] == self.dim
311
+
312
+ # split the feature dimension into groups
313
+
314
+ x = x.chunk(self.groups, dim=split_dim)
315
+
316
+ forward_kwargs = dict(
317
+ return_all_codes=return_all_codes,
318
+ rand_quantize_dropout_fixed_seed=(
319
+ get_maybe_sync_seed(device) if self.training else None
320
+ ),
321
+ )
322
+
323
+ # invoke residual vq on each group
324
+
325
+ out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x))
326
+ out = tuple(zip(*out))
327
+
328
+ # otherwise, get all the zipped outputs and combine them
329
+
330
+ quantized, all_indices, *maybe_all_codes = out
331
+
332
+ quantized = torch.cat(quantized, dim=split_dim)
333
+ all_indices = torch.stack(all_indices)
334
+
335
+ ret = (quantized, all_indices, *maybe_all_codes)
336
+ return ret
337
+
338
+
339
+ if __name__ == "__main__":
340
+ model = ResidualFSQ(
341
+ levels=[4, 4, 4, 4, 4, 4],
342
+ num_quantizers=1,
343
+ dim=30,
344
+ is_channel_first=True,
345
+ quantize_dropout=False,
346
+ )
347
+ x = torch.randn(2, 30, 10)
348
+ quantize, embed_ind = model(x)
349
+
350
+ emb_from_ind = model.get_output_from_indices(embed_ind.transpose(1, 2))
351
+
352
+ print(quantize == emb_from_ind.transpose(1, 2))
353
+
354
+ print("quantize shape", quantize.shape)
355
+ print("embed_ind", embed_ind)
sparktts/modules/speaker/ecapa_tdnn.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Zhengyang Chen ([email protected])
2
+ # 2022 Hongji Wang ([email protected])
3
+ # 2023 Bing Han ([email protected])
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """ This implementation is adapted from github repo:
18
+ https://github.com/lawlict/ECAPA-TDNN.
19
+ """
20
+
21
+ import torch
22
+ import torch.nn as nn
23
+ import torch.nn.functional as F
24
+
25
+ import sparktts.modules.speaker.pooling_layers as pooling_layers
26
+
27
+
28
+ class Res2Conv1dReluBn(nn.Module):
29
+ """
30
+ in_channels == out_channels == channels
31
+ """
32
+
33
+ def __init__(
34
+ self,
35
+ channels,
36
+ kernel_size=1,
37
+ stride=1,
38
+ padding=0,
39
+ dilation=1,
40
+ bias=True,
41
+ scale=4,
42
+ ):
43
+ super().__init__()
44
+ assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
45
+ self.scale = scale
46
+ self.width = channels // scale
47
+ self.nums = scale if scale == 1 else scale - 1
48
+
49
+ self.convs = []
50
+ self.bns = []
51
+ for i in range(self.nums):
52
+ self.convs.append(
53
+ nn.Conv1d(
54
+ self.width,
55
+ self.width,
56
+ kernel_size,
57
+ stride,
58
+ padding,
59
+ dilation,
60
+ bias=bias,
61
+ )
62
+ )
63
+ self.bns.append(nn.BatchNorm1d(self.width))
64
+ self.convs = nn.ModuleList(self.convs)
65
+ self.bns = nn.ModuleList(self.bns)
66
+
67
+ def forward(self, x):
68
+ out = []
69
+ spx = torch.split(x, self.width, 1)
70
+ sp = spx[0]
71
+ for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
72
+ # Order: conv -> relu -> bn
73
+ if i >= 1:
74
+ sp = sp + spx[i]
75
+ sp = conv(sp)
76
+ sp = bn(F.relu(sp))
77
+ out.append(sp)
78
+ if self.scale != 1:
79
+ out.append(spx[self.nums])
80
+ out = torch.cat(out, dim=1)
81
+
82
+ return out
83
+
84
+
85
+ """ Conv1d + BatchNorm1d + ReLU
86
+ """
87
+
88
+
89
+ class Conv1dReluBn(nn.Module):
90
+
91
+ def __init__(
92
+ self,
93
+ in_channels,
94
+ out_channels,
95
+ kernel_size=1,
96
+ stride=1,
97
+ padding=0,
98
+ dilation=1,
99
+ bias=True,
100
+ ):
101
+ super().__init__()
102
+ self.conv = nn.Conv1d(
103
+ in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
104
+ )
105
+ self.bn = nn.BatchNorm1d(out_channels)
106
+
107
+ def forward(self, x):
108
+ return self.bn(F.relu(self.conv(x)))
109
+
110
+
111
+ """ The SE connection of 1D case.
112
+ """
113
+
114
+
115
+ class SE_Connect(nn.Module):
116
+
117
+ def __init__(self, channels, se_bottleneck_dim=128):
118
+ super().__init__()
119
+ self.linear1 = nn.Linear(channels, se_bottleneck_dim)
120
+ self.linear2 = nn.Linear(se_bottleneck_dim, channels)
121
+
122
+ def forward(self, x):
123
+ out = x.mean(dim=2)
124
+ out = F.relu(self.linear1(out))
125
+ out = torch.sigmoid(self.linear2(out))
126
+ out = x * out.unsqueeze(2)
127
+
128
+ return out
129
+
130
+
131
+ """ SE-Res2Block of the ECAPA-TDNN architecture.
132
+ """
133
+
134
+
135
+ class SE_Res2Block(nn.Module):
136
+
137
+ def __init__(self, channels, kernel_size, stride, padding, dilation, scale):
138
+ super().__init__()
139
+ self.se_res2block = nn.Sequential(
140
+ Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
141
+ Res2Conv1dReluBn(
142
+ channels, kernel_size, stride, padding, dilation, scale=scale
143
+ ),
144
+ Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
145
+ SE_Connect(channels),
146
+ )
147
+
148
+ def forward(self, x):
149
+ return x + self.se_res2block(x)
150
+
151
+
152
+ class ECAPA_TDNN(nn.Module):
153
+
154
+ def __init__(
155
+ self,
156
+ channels=512,
157
+ feat_dim=80,
158
+ embed_dim=192,
159
+ pooling_func="ASTP",
160
+ global_context_att=False,
161
+ emb_bn=False,
162
+ ):
163
+ super().__init__()
164
+
165
+ self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2)
166
+ self.layer2 = SE_Res2Block(
167
+ channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8
168
+ )
169
+ self.layer3 = SE_Res2Block(
170
+ channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8
171
+ )
172
+ self.layer4 = SE_Res2Block(
173
+ channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8
174
+ )
175
+
176
+ cat_channels = channels * 3
177
+ out_channels = 512 * 3
178
+ self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1)
179
+ self.pool = getattr(pooling_layers, pooling_func)(
180
+ in_dim=out_channels, global_context_att=global_context_att
181
+ )
182
+ self.pool_out_dim = self.pool.get_out_dim()
183
+ self.bn = nn.BatchNorm1d(self.pool_out_dim)
184
+ self.linear = nn.Linear(self.pool_out_dim, embed_dim)
185
+ self.emb_bn = emb_bn
186
+ if emb_bn: # better in SSL for SV
187
+ self.bn2 = nn.BatchNorm1d(embed_dim)
188
+ else:
189
+ self.bn2 = nn.Identity()
190
+
191
+ def forward(self, x, return_latent=False):
192
+ x = x.permute(0, 2, 1) # (B,T,F) -> (B,F,T)
193
+
194
+ out1 = self.layer1(x)
195
+ out2 = self.layer2(out1)
196
+ out3 = self.layer3(out2)
197
+ out4 = self.layer4(out3)
198
+
199
+ out = torch.cat([out2, out3, out4], dim=1)
200
+ latent = F.relu(self.conv(out))
201
+ out = self.bn(self.pool(latent))
202
+ out = self.linear(out)
203
+ if self.emb_bn:
204
+ out = self.bn2(out)
205
+
206
+ if return_latent:
207
+ return out, latent
208
+ return out
209
+
210
+
211
+ def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
212
+ return ECAPA_TDNN(
213
+ channels=1024,
214
+ feat_dim=feat_dim,
215
+ embed_dim=embed_dim,
216
+ pooling_func=pooling_func,
217
+ emb_bn=emb_bn,
218
+ )
219
+
220
+
221
+ def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
222
+ return ECAPA_TDNN(
223
+ channels=1024,
224
+ feat_dim=feat_dim,
225
+ embed_dim=embed_dim,
226
+ pooling_func=pooling_func,
227
+ global_context_att=True,
228
+ emb_bn=emb_bn,
229
+ )
230
+
231
+
232
+ def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
233
+ return ECAPA_TDNN(
234
+ channels=512,
235
+ feat_dim=feat_dim,
236
+ embed_dim=embed_dim,
237
+ pooling_func=pooling_func,
238
+ emb_bn=emb_bn,
239
+ )
240
+
241
+
242
+ def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
243
+ return ECAPA_TDNN(
244
+ channels=512,
245
+ feat_dim=feat_dim,
246
+ embed_dim=embed_dim,
247
+ pooling_func=pooling_func,
248
+ global_context_att=True,
249
+ emb_bn=emb_bn,
250
+ )
251
+
252
+
253
+ if __name__ == "__main__":
254
+ x = torch.zeros(1, 200, 100)
255
+ model = ECAPA_TDNN_GLOB_c512(feat_dim=100, embed_dim=256, pooling_func="ASTP")
256
+ model.eval()
257
+ out, latent = model(x, True)
258
+ print(out.shape)
259
+ print(latent.shape)
260
+
261
+ num_params = sum(param.numel() for param in model.parameters())
262
+ print("{} M".format(num_params / 1e6))
263
+
264
+ # from thop import profile
265
+ # x_np = torch.randn(1, 200, 80)
266
+ # flops, params = profile(model, inputs=(x_np, ))
267
+ # print("FLOPs: {} G, Params: {} M".format(flops / 1e9, params / 1e6))
sparktts/modules/speaker/perceiver_encoder.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Adapted from https://github.com/lucidrains/naturalspeech2-pytorch/blob/659bec7f7543e7747e809e950cc2f84242fbeec7/naturalspeech2_pytorch/naturalspeech2_pytorch.py#L532
17
+
18
+ from collections import namedtuple
19
+ from functools import wraps
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from einops import rearrange, repeat
24
+ from einops.layers.torch import Rearrange
25
+ from packaging import version
26
+ from torch import einsum, nn
27
+
28
+
29
+ def exists(val):
30
+ return val is not None
31
+
32
+
33
+ def once(fn):
34
+ called = False
35
+
36
+ @wraps(fn)
37
+ def inner(x):
38
+ nonlocal called
39
+ if called:
40
+ return
41
+ called = True
42
+ return fn(x)
43
+
44
+ return inner
45
+
46
+
47
+ print_once = once(print)
48
+
49
+ # main class
50
+
51
+
52
+ class Attend(nn.Module):
53
+ def __init__(self, dropout=0.0, causal=False, use_flash=False):
54
+ super().__init__()
55
+ self.dropout = dropout
56
+ self.attn_dropout = nn.Dropout(dropout)
57
+
58
+ self.causal = causal
59
+ self.register_buffer("mask", None, persistent=False)
60
+
61
+ self.use_flash = use_flash
62
+ assert not (
63
+ use_flash and version.parse(torch.__version__) < version.parse("2.0.0")
64
+ ), "in order to use flash attention, you must be using pytorch 2.0 or above"
65
+
66
+ # determine efficient attention configs for cuda and cpu
67
+ self.config = namedtuple(
68
+ "EfficientAttentionConfig",
69
+ ["enable_flash", "enable_math", "enable_mem_efficient"],
70
+ )
71
+ self.cpu_config = self.config(True, True, True)
72
+ self.cuda_config = None
73
+
74
+ if not torch.cuda.is_available() or not use_flash:
75
+ return
76
+
77
+ device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
78
+
79
+ if device_properties.major == 8 and device_properties.minor == 0:
80
+ print_once(
81
+ "A100 GPU detected, using flash attention if input tensor is on cuda"
82
+ )
83
+ self.cuda_config = self.config(True, False, False)
84
+ else:
85
+ print_once(
86
+ "Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda"
87
+ )
88
+ self.cuda_config = self.config(False, True, True)
89
+
90
+ def get_mask(self, n, device):
91
+ if exists(self.mask) and self.mask.shape[-1] >= n:
92
+ return self.mask[:n, :n]
93
+
94
+ mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
95
+ self.register_buffer("mask", mask, persistent=False)
96
+ return mask
97
+
98
+ def flash_attn(self, q, k, v, mask=None):
99
+ _, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda
100
+
101
+ # Recommended for multi-query single-key-value attention by Tri Dao
102
+ # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
103
+
104
+ if k.ndim == 3:
105
+ k = rearrange(k, "b ... -> b 1 ...").expand_as(q)
106
+
107
+ if v.ndim == 3:
108
+ v = rearrange(v, "b ... -> b 1 ...").expand_as(q)
109
+
110
+ # Check if mask exists and expand to compatible shape
111
+ # The mask is B L, so it would have to be expanded to B H N L
112
+
113
+ if exists(mask):
114
+ mask = rearrange(mask, "b j -> b 1 1 j")
115
+ mask = mask.expand(-1, heads, q_len, -1)
116
+
117
+ # Check if there is a compatible device for flash attention
118
+
119
+ config = self.cuda_config if is_cuda else self.cpu_config
120
+
121
+ # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
122
+
123
+ with torch.backends.cuda.sdp_kernel(**config._asdict()):
124
+ out = F.scaled_dot_product_attention(
125
+ q,
126
+ k,
127
+ v,
128
+ attn_mask=mask,
129
+ dropout_p=self.dropout if self.training else 0.0,
130
+ is_causal=self.causal,
131
+ )
132
+
133
+ return out
134
+
135
+ def forward(self, q, k, v, mask=None):
136
+ """
137
+ einstein notation
138
+ b - batch
139
+ h - heads
140
+ n, i, j - sequence length (base sequence length, source, target)
141
+ d - feature dimension
142
+ """
143
+
144
+ n, device = q.shape[-2], q.device
145
+
146
+ scale = q.shape[-1] ** -0.5
147
+
148
+ if self.use_flash:
149
+ return self.flash_attn(q, k, v, mask=mask)
150
+
151
+ kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d"
152
+
153
+ # similarity
154
+
155
+ sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
156
+
157
+ # key padding mask
158
+
159
+ if exists(mask):
160
+ mask = rearrange(mask, "b j -> b 1 1 j")
161
+ sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
162
+
163
+ # causal mask
164
+
165
+ if self.causal:
166
+ causal_mask = self.get_mask(n, device)
167
+ sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
168
+
169
+ # attention
170
+
171
+ attn = sim.softmax(dim=-1)
172
+ attn = self.attn_dropout(attn)
173
+
174
+ # aggregate values
175
+
176
+ out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
177
+
178
+ return out
179
+
180
+
181
+ def Sequential(*mods):
182
+ return nn.Sequential(*filter(exists, mods))
183
+
184
+
185
+ def exists(x):
186
+ return x is not None
187
+
188
+
189
+ def default(val, d):
190
+ if exists(val):
191
+ return val
192
+ return d() if callable(d) else d
193
+
194
+
195
+ class RMSNorm(nn.Module):
196
+ def __init__(self, dim, scale=True, dim_cond=None):
197
+ super().__init__()
198
+ self.cond = exists(dim_cond)
199
+ self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None
200
+
201
+ self.scale = dim**0.5
202
+ self.gamma = nn.Parameter(torch.ones(dim)) if scale else None
203
+
204
+ def forward(self, x, cond=None):
205
+ gamma = default(self.gamma, 1)
206
+ out = F.normalize(x, dim=-1) * self.scale * gamma
207
+
208
+ if not self.cond:
209
+ return out
210
+
211
+ assert exists(cond)
212
+ gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1)
213
+ gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta))
214
+ return out * gamma + beta
215
+
216
+
217
+ class CausalConv1d(nn.Conv1d):
218
+ def __init__(self, *args, **kwargs):
219
+ super().__init__(*args, **kwargs)
220
+ (kernel_size,) = self.kernel_size
221
+ (dilation,) = self.dilation
222
+ (stride,) = self.stride
223
+
224
+ assert stride == 1
225
+ self.causal_padding = dilation * (kernel_size - 1)
226
+
227
+ def forward(self, x):
228
+ causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0)
229
+ return super().forward(causal_padded_x)
230
+
231
+
232
+ class GEGLU(nn.Module):
233
+ def forward(self, x):
234
+ x, gate = x.chunk(2, dim=-1)
235
+ return F.gelu(gate) * x
236
+
237
+
238
+ def FeedForward(dim, mult=4, causal_conv=False):
239
+ dim_inner = int(dim * mult * 2 / 3)
240
+
241
+ conv = None
242
+ if causal_conv:
243
+ conv = nn.Sequential(
244
+ Rearrange("b n d -> b d n"),
245
+ CausalConv1d(dim_inner, dim_inner, 3),
246
+ Rearrange("b d n -> b n d"),
247
+ )
248
+
249
+ return Sequential(
250
+ nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim)
251
+ )
252
+
253
+
254
+ class Attention(nn.Module):
255
+ def __init__(
256
+ self,
257
+ dim,
258
+ *,
259
+ dim_context=None,
260
+ causal=False,
261
+ dim_head=64,
262
+ heads=8,
263
+ dropout=0.0,
264
+ use_flash=False,
265
+ cross_attn_include_queries=False,
266
+ ):
267
+ super().__init__()
268
+ self.scale = dim_head**-0.5
269
+ self.heads = heads
270
+ self.cross_attn_include_queries = cross_attn_include_queries
271
+
272
+ dim_inner = dim_head * heads
273
+ dim_context = default(dim_context, dim)
274
+
275
+ self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash)
276
+ self.to_q = nn.Linear(dim, dim_inner, bias=False)
277
+ self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False)
278
+ self.to_out = nn.Linear(dim_inner, dim, bias=False)
279
+
280
+ def forward(self, x, context=None, mask=None):
281
+ h, has_context = self.heads, exists(context)
282
+
283
+ context = default(context, x)
284
+
285
+ if has_context and self.cross_attn_include_queries:
286
+ context = torch.cat((x, context), dim=-2)
287
+
288
+ q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
289
+ q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
290
+
291
+ out = self.attend(q, k, v, mask=mask)
292
+
293
+ out = rearrange(out, "b h n d -> b n (h d)")
294
+ return self.to_out(out)
295
+
296
+
297
+ class PerceiverResampler(nn.Module):
298
+ def __init__(
299
+ self,
300
+ *,
301
+ dim,
302
+ depth=2,
303
+ dim_context=None,
304
+ num_latents=32,
305
+ dim_head=64,
306
+ heads=8,
307
+ ff_mult=4,
308
+ use_flash_attn=False,
309
+ ):
310
+ super().__init__()
311
+ dim_context = default(dim_context, dim)
312
+
313
+ self.proj_context = (
314
+ nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity()
315
+ )
316
+
317
+ self.latents = nn.Parameter(torch.randn(num_latents, dim))
318
+ nn.init.normal_(self.latents, std=0.02)
319
+
320
+ self.layers = nn.ModuleList([])
321
+ for _ in range(depth):
322
+ self.layers.append(
323
+ nn.ModuleList(
324
+ [
325
+ Attention(
326
+ dim=dim,
327
+ dim_head=dim_head,
328
+ heads=heads,
329
+ use_flash=use_flash_attn,
330
+ cross_attn_include_queries=True,
331
+ ),
332
+ FeedForward(dim=dim, mult=ff_mult),
333
+ ]
334
+ )
335
+ )
336
+
337
+ self.norm = RMSNorm(dim)
338
+
339
+ def forward(self, x, mask=None):
340
+ batch = x.shape[0]
341
+
342
+ x = self.proj_context(x)
343
+
344
+ latents = repeat(self.latents, "n d -> b n d", b=batch)
345
+
346
+ for attn, ff in self.layers:
347
+ latents = attn(latents, x, mask=mask) + latents
348
+ latents = ff(latents) + latents
349
+
350
+ return self.norm(latents)
351
+
352
+
353
+ if __name__ == "__main__":
354
+ model = PerceiverResampler(dim=256, dim_context=80)
355
+ x = torch.randn(8, 200, 80)
356
+ out = model(x)
357
+ print(out.shape) # [8, 32, 80]
358
+
359
+ num_params = sum(param.numel() for param in model.parameters())
360
+ print("{} M".format(num_params / 1e6))
sparktts/modules/speaker/pooling_layers.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Shuai Wang ([email protected])
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Pooling functions to aggregate frame-level deep features
16
+ into segment-level speaker embeddings
17
+
18
+ High-order statistics are surprisingly effective, TSDP acts similarly as TSTP,
19
+ even though we remove the mean statistic, on Voxceleb.
20
+ """
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+
26
+
27
+ class TAP(nn.Module):
28
+ """
29
+ Temporal average pooling, only first-order mean is considered
30
+ """
31
+
32
+ def __init__(self, in_dim=0, **kwargs):
33
+ super(TAP, self).__init__()
34
+ self.in_dim = in_dim
35
+
36
+ def forward(self, x):
37
+ pooling_mean = x.mean(dim=-1)
38
+ # To be compatable with 2D input
39
+ pooling_mean = pooling_mean.flatten(start_dim=1)
40
+ return pooling_mean
41
+
42
+ def get_out_dim(self):
43
+ self.out_dim = self.in_dim
44
+ return self.out_dim
45
+
46
+
47
+ class TSDP(nn.Module):
48
+ """
49
+ Temporal standard deviation pooling, only second-order std is considered
50
+ """
51
+
52
+ def __init__(self, in_dim=0, **kwargs):
53
+ super(TSDP, self).__init__()
54
+ self.in_dim = in_dim
55
+
56
+ def forward(self, x):
57
+ # The last dimension is the temporal axis
58
+ pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7)
59
+ pooling_std = pooling_std.flatten(start_dim=1)
60
+ return pooling_std
61
+
62
+ def get_out_dim(self):
63
+ self.out_dim = self.in_dim
64
+ return self.out_dim
65
+
66
+
67
+ class TSTP(nn.Module):
68
+ """
69
+ Temporal statistics pooling, concatenate mean and std, which is used in
70
+ x-vector
71
+ Comment: simple concatenation can not make full use of both statistics
72
+ """
73
+
74
+ def __init__(self, in_dim=0, **kwargs):
75
+ super(TSTP, self).__init__()
76
+ self.in_dim = in_dim
77
+
78
+ def forward(self, x):
79
+ # The last dimension is the temporal axis
80
+ pooling_mean = x.mean(dim=-1)
81
+ pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7)
82
+ pooling_mean = pooling_mean.flatten(start_dim=1)
83
+ pooling_std = pooling_std.flatten(start_dim=1)
84
+ stats = torch.cat((pooling_mean, pooling_std), 1)
85
+ return stats
86
+
87
+ def get_out_dim(self):
88
+ self.out_dim = self.in_dim * 2
89
+ return self.out_dim
90
+
91
+
92
+ class ASTP(nn.Module):
93
+ """ Attentive statistics pooling: Channel- and context-dependent
94
+ statistics pooling, first used in ECAPA_TDNN.
95
+ """
96
+
97
+ def __init__(self,
98
+ in_dim,
99
+ bottleneck_dim=128,
100
+ global_context_att=False,
101
+ **kwargs):
102
+ super(ASTP, self).__init__()
103
+ self.in_dim = in_dim
104
+ self.global_context_att = global_context_att
105
+
106
+ # Use Conv1d with stride == 1 rather than Linear, then we don't
107
+ # need to transpose inputs.
108
+ if global_context_att:
109
+ self.linear1 = nn.Conv1d(
110
+ in_dim * 3, bottleneck_dim,
111
+ kernel_size=1) # equals W and b in the paper
112
+ else:
113
+ self.linear1 = nn.Conv1d(
114
+ in_dim, bottleneck_dim,
115
+ kernel_size=1) # equals W and b in the paper
116
+ self.linear2 = nn.Conv1d(bottleneck_dim, in_dim,
117
+ kernel_size=1) # equals V and k in the paper
118
+
119
+ def forward(self, x):
120
+ """
121
+ x: a 3-dimensional tensor in tdnn-based architecture (B,F,T)
122
+ or a 4-dimensional tensor in resnet architecture (B,C,F,T)
123
+ 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
124
+ """
125
+ if len(x.shape) == 4:
126
+ x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3])
127
+ assert len(x.shape) == 3
128
+
129
+ if self.global_context_att:
130
+ context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
131
+ context_std = torch.sqrt(
132
+ torch.var(x, dim=-1, keepdim=True) + 1e-7).expand_as(x)
133
+ x_in = torch.cat((x, context_mean, context_std), dim=1)
134
+ else:
135
+ x_in = x
136
+
137
+ # DON'T use ReLU here! ReLU may be hard to converge.
138
+ alpha = torch.tanh(
139
+ self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in))
140
+ alpha = torch.softmax(self.linear2(alpha), dim=2)
141
+ mean = torch.sum(alpha * x, dim=2)
142
+ var = torch.sum(alpha * (x**2), dim=2) - mean**2
143
+ std = torch.sqrt(var.clamp(min=1e-7))
144
+ return torch.cat([mean, std], dim=1)
145
+
146
+ def get_out_dim(self):
147
+ self.out_dim = 2 * self.in_dim
148
+ return self.out_dim
149
+
150
+
151
+ class MHASTP(torch.nn.Module):
152
+ """ Multi head attentive statistics pooling
153
+ Reference:
154
+ Self Multi-Head Attention for Speaker Recognition
155
+ https://arxiv.org/pdf/1906.09890.pdf
156
+ """
157
+
158
+ def __init__(self,
159
+ in_dim,
160
+ layer_num=2,
161
+ head_num=2,
162
+ d_s=1,
163
+ bottleneck_dim=64,
164
+ **kwargs):
165
+ super(MHASTP, self).__init__()
166
+ assert (in_dim % head_num
167
+ ) == 0 # make sure that head num can be divided by input_dim
168
+ self.in_dim = in_dim
169
+ self.head_num = head_num
170
+ d_model = int(in_dim / head_num)
171
+ channel_dims = [bottleneck_dim for i in range(layer_num + 1)]
172
+ if d_s > 1:
173
+ d_s = d_model
174
+ else:
175
+ d_s = 1
176
+ self.d_s = d_s
177
+ channel_dims[0], channel_dims[-1] = d_model, d_s
178
+ heads_att_trans = []
179
+ for i in range(self.head_num):
180
+ att_trans = nn.Sequential()
181
+ for i in range(layer_num - 1):
182
+ att_trans.add_module(
183
+ 'att_' + str(i),
184
+ nn.Conv1d(channel_dims[i], channel_dims[i + 1], 1, 1))
185
+ att_trans.add_module('tanh' + str(i), nn.Tanh())
186
+ att_trans.add_module(
187
+ 'att_' + str(layer_num - 1),
188
+ nn.Conv1d(channel_dims[layer_num - 1], channel_dims[layer_num],
189
+ 1, 1))
190
+ heads_att_trans.append(att_trans)
191
+ self.heads_att_trans = nn.ModuleList(heads_att_trans)
192
+
193
+ def forward(self, input):
194
+ """
195
+ input: a 3-dimensional tensor in xvector architecture
196
+ or a 4-dimensional tensor in resnet architecture
197
+ 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
198
+ """
199
+ if len(input.shape) == 4: # B x F x T
200
+ input = input.reshape(input.shape[0],
201
+ input.shape[1] * input.shape[2],
202
+ input.shape[3])
203
+ assert len(input.shape) == 3
204
+ bs, f_dim, t_dim = input.shape
205
+ chunks = torch.chunk(input, self.head_num, 1)
206
+ # split
207
+ chunks_out = []
208
+ # for i in range(self.head_num):
209
+ # att_score = self.heads_att_trans[i](chunks[i])
210
+ for i, layer in enumerate(self.heads_att_trans):
211
+ att_score = layer(chunks[i])
212
+ alpha = F.softmax(att_score, dim=-1)
213
+ mean = torch.sum(alpha * chunks[i], dim=2)
214
+ var = torch.sum(alpha * chunks[i]**2, dim=2) - mean**2
215
+ std = torch.sqrt(var.clamp(min=1e-7))
216
+ chunks_out.append(torch.cat((mean, std), dim=1))
217
+ out = torch.cat(chunks_out, dim=1)
218
+ return out
219
+
220
+ def get_out_dim(self):
221
+ self.out_dim = 2 * self.in_dim
222
+ return self.out_dim
223
+
224
+
225
+ class MQMHASTP(torch.nn.Module):
226
+ """ An attentive pooling
227
+ Reference:
228
+ multi query multi head attentive statistics pooling
229
+ https://arxiv.org/pdf/2110.05042.pdf
230
+ Args:
231
+ in_dim: the feature dimension of input
232
+ layer_num: the number of layer in the pooling layer
233
+ query_num: the number of querys
234
+ head_num: the number of heads
235
+ bottleneck_dim: the bottleneck dimension
236
+
237
+ SA (H = 1, Q = 1, n = 2, d_s = 1) ref:
238
+ https://www.danielpovey.com/files/2018_interspeech_xvector_attention.pdf
239
+ MHA (H > 1, Q = 1, n = 1, d_s = 1) ref:
240
+ https://arxiv.org/pdf/1906.09890.pdf
241
+ AS (H = 1, Q > 1, n = 2, d_s = 1) ref:
242
+ https://arxiv.org/pdf/1803.10963.pdf
243
+ VSA (H = 1, Q > 1, n = 2, d_s = d_h) ref:
244
+ http://www.interspeech2020.org/uploadfile/pdf/Mon-2-10-5.pdf
245
+ """
246
+
247
+ def __init__(self,
248
+ in_dim,
249
+ layer_num=2,
250
+ query_num=2,
251
+ head_num=8,
252
+ d_s=2,
253
+ bottleneck_dim=64,
254
+ **kwargs):
255
+ super(MQMHASTP, self).__init__()
256
+ self.n_query = nn.ModuleList([
257
+ MHASTP(in_dim,
258
+ layer_num=layer_num,
259
+ head_num=head_num,
260
+ d_s=d_s,
261
+ bottleneck_dim=bottleneck_dim) for i in range(query_num)
262
+ ])
263
+ self.query_num = query_num
264
+ self.in_dim = in_dim
265
+
266
+ def forward(self, input):
267
+ """
268
+ input: a 3-dimensional tensor in xvector architecture
269
+ or a 4-dimensional tensor in resnet architecture
270
+ 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
271
+ """
272
+ if len(input.shape) == 4: # B x F x T
273
+ input = input.reshape(input.shape[0],
274
+ input.shape[1] * input.shape[2],
275
+ input.shape[3])
276
+ assert len(input.shape) == 3
277
+ res = []
278
+ for i, layer in enumerate(self.n_query):
279
+ res.append(layer(input))
280
+ out = torch.cat(res, dim=-1)
281
+ return out
282
+
283
+ def get_out_dim(self):
284
+ self.out_dim = self.in_dim * 2 * self.query_num
285
+ return self.out_dim
286
+
287
+
288
+ if __name__ == '__main__':
289
+ data = torch.randn(16, 512, 10, 35)
290
+ # model = StatisticsPooling()
291
+ model = MQMHASTP(512 * 10)
292
+ model = MHASTP(512 * 10)
293
+ model = MQMHASTP(512 * 10, context=False)
294
+ print(model)
295
+
296
+ out = model(data)
297
+ print(out.shape)
298
+ print(model.get_out_dim())
sparktts/modules/speaker/speaker_encoder.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+
19
+ from typing import List, Tuple
20
+ from sparktts.modules.fsq.residual_fsq import ResidualFSQ
21
+ from sparktts.modules.speaker.ecapa_tdnn import ECAPA_TDNN_GLOB_c512
22
+ from sparktts.modules.speaker.perceiver_encoder import PerceiverResampler
23
+
24
+ """
25
+ x-vector + d-vector
26
+ """
27
+
28
+
29
+ class SpeakerEncoder(nn.Module):
30
+ """
31
+
32
+ Args:
33
+ input_dim (int): acoustic feature dimension
34
+ out_dim (int): output dimension of x-vector and d-vector
35
+ latent_dim (int): latent dimension before quantization
36
+ token_num (int): sequence length of speaker tokens
37
+ fsq_levels (List[int]): number of levels for each quantizer
38
+ fsq_num_quantizers (int): number of quantizers
39
+
40
+ Return:
41
+ speaker_embs: (B, T2, out_dim)
42
+ """
43
+
44
+ def __init__(
45
+ self,
46
+ input_dim: int = 100,
47
+ out_dim: int = 512,
48
+ latent_dim: int = 128,
49
+ token_num: int = 32,
50
+ fsq_levels: List[int] = [4, 4, 4, 4, 4, 4],
51
+ fsq_num_quantizers: int = 1,
52
+ ):
53
+ super(SpeakerEncoder, self).__init__()
54
+
55
+ self.speaker_encoder = ECAPA_TDNN_GLOB_c512(
56
+ feat_dim=input_dim, embed_dim=out_dim
57
+ )
58
+ self.perceiver_sampler = PerceiverResampler(
59
+ dim=latent_dim, dim_context=512 * 3, num_latents=token_num
60
+ )
61
+ self.quantizer = ResidualFSQ(
62
+ levels=fsq_levels,
63
+ num_quantizers=fsq_num_quantizers,
64
+ dim=latent_dim,
65
+ is_channel_first=True,
66
+ quantize_dropout=False,
67
+ )
68
+
69
+ self.project = nn.Linear(latent_dim * token_num, out_dim)
70
+
71
+ def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor:
72
+ zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2))
73
+ return zq.transpose(1, 2)
74
+
75
+ def get_indices(self, mels: torch.Tensor) -> torch.Tensor:
76
+ mels = mels.transpose(1, 2)
77
+ x = self.perceiver_sampler(mels).transpose(1, 2)
78
+ zq, indices = self.quantizer(x)
79
+ return indices
80
+
81
+ def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
82
+ """
83
+ Args:
84
+ mels: (B, D_mel, T1)
85
+
86
+ Return:
87
+ x_vector: (B, out_dim)
88
+ d_vector: (B, out_dim)
89
+ """
90
+ # mels = mels.transpose(1,2)
91
+
92
+ x_vector, features = self.speaker_encoder(mels, True)
93
+ x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
94
+ zq, indices = self.quantizer(x) # zq: (B, latent_dim, T2, latent_dim)
95
+ x = zq.reshape(zq.shape[0], -1)
96
+ d_vector = self.project(x)
97
+
98
+ return x_vector, d_vector
99
+
100
+ def tokenize(self, mels: torch.Tensor) -> torch.Tensor:
101
+ """tokenize the input mel spectrogram"""
102
+ _, features = self.speaker_encoder(mels, True)
103
+ x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
104
+ zq, indices = self.quantizer(x)
105
+ return indices
106
+
107
+ def detokenize(self, indices: torch.Tensor) -> torch.Tensor:
108
+ """detokenize the input indices to d-vector"""
109
+ zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2)
110
+ x = zq.reshape(zq.shape[0], -1)
111
+ d_vector = self.project(x)
112
+ return d_vector
113
+
114
+ if __name__ == "__main__":
115
+ model = SpeakerEncoder(
116
+ input_dim=100,
117
+ latent_dim=128,
118
+ token_num=32,
119
+ fsq_levels=[4, 4, 4, 4, 4, 4],
120
+ fsq_num_quantizers=1,
121
+ )
122
+ mel = torch.randn(8, 200, 100)
123
+ x_vector, d_vector = model(mel)
124
+ print("x-vector shape", x_vector.shape)
125
+ print("d-vector shape", d_vector.shape)
126
+
127
+ indices = model.tokenize(mel)
128
+ print("indices shape", indices.shape)
129
+ d_vector_post = model.detokenize(indices)
130
+ print("d-vector shape", d_vector_post.shape)
131
+ if d_vector_post.all() == d_vector.all():
132
+ print("d-vector post and d-vector are the same")
133
+ else:
134
+ print("d-vector post and d-vector are different")
135
+ num_params = sum(param.numel() for param in model.parameters())
136
+ print("{} M".format(num_params / 1e6))
sparktts/modules/vq/factorized_vector_quantize.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Heavily based on https://github.com/lucidrains/vector-quantize-pytorch
17
+
18
+
19
+ from typing import Any, Dict
20
+
21
+ import torch
22
+ import torch.nn as nn
23
+ import torch.nn.functional as F
24
+ from einops import rearrange
25
+ from torch.nn.utils import weight_norm
26
+
27
+
28
+ def WNConv1d(*args, **kwargs):
29
+ return weight_norm(nn.Conv1d(*args, **kwargs))
30
+
31
+
32
+ def ema_inplace(moving_avg, new, decay):
33
+ moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
34
+
35
+
36
+ class FactorizedVectorQuantize(nn.Module):
37
+ def __init__(
38
+ self,
39
+ input_dim: int,
40
+ codebook_size: int,
41
+ codebook_dim: int,
42
+ commitment: float,
43
+ codebook_loss_weight: float = 1.0,
44
+ decay: float = 0.99,
45
+ threshold_ema_dead_code: float = 2,
46
+ momentum: float = 0.99,
47
+ **kwargs,
48
+ ):
49
+ super().__init__()
50
+ self.input_dim = input_dim
51
+ self.codebook_size = codebook_size
52
+ self.codebook_dim = codebook_dim
53
+ self.commitment = commitment
54
+ self.codebook_loss_weight = codebook_loss_weight
55
+ self.decay = decay
56
+ self.threshold_ema_dead_code = threshold_ema_dead_code
57
+ self.momentum = momentum
58
+
59
+ if input_dim != self.codebook_dim:
60
+ self.in_project = WNConv1d(input_dim, self.codebook_dim, kernel_size=1)
61
+ self.out_project = WNConv1d(self.codebook_dim, input_dim, kernel_size=1)
62
+
63
+ else:
64
+ self.in_project = nn.Identity()
65
+ self.out_project = nn.Identity()
66
+
67
+ self.codebook = nn.Embedding(self.codebook_size, self.codebook_dim)
68
+ self.register_buffer("cluster_size", torch.zeros(self.codebook_size))
69
+
70
+ def forward(self, z: torch.Tensor) -> Dict[str, Any]:
71
+ """Quantized the input tensor using a fixed codebook and returns
72
+ the corresponding codebook vectors
73
+
74
+ Parameters
75
+ ----------
76
+ z : Tensor[B x D x T]
77
+
78
+ Returns
79
+ -------
80
+ Tensor[B x D x T]
81
+ Quantized continuous representation of input
82
+ Tensor[1]
83
+ Commitment loss to train encoder to predict vectors closer to codebook
84
+ entries
85
+ Tensor[1]
86
+ Codebook loss to update the codebook
87
+ Tensor[B x T]
88
+ Codebook indices (quantized discrete representation of input)
89
+ Tensor[B x D x T]
90
+ Projected latents (continuous representation of input before quantization)
91
+ """
92
+ # transpose since we use linear
93
+
94
+ # Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim
95
+ z_e = self.in_project(z)
96
+ z_q, indices, dists = self.decode_latents(z_e)
97
+
98
+ # statistic the usage of codes
99
+ embed_onehot = F.one_hot(indices, self.codebook_size).type(z_e.dtype)
100
+ avg_probs = torch.mean(embed_onehot.reshape(-1, self.codebook_size), dim=0)
101
+ perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
102
+
103
+ active_num = (embed_onehot.sum(0).sum(0) > 0).sum()
104
+ if self.training:
105
+ # We do the expiry of code at that point as buffers are in sync
106
+ # and all the workers will take the same decision.
107
+ ema_inplace(self.cluster_size, embed_onehot.sum(0).sum(0), self.decay)
108
+ active_num = sum(self.cluster_size > self.threshold_ema_dead_code)
109
+
110
+ if self.training:
111
+ commit_loss = (
112
+ F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
113
+ * self.commitment
114
+ )
115
+
116
+ codebook_loss = (
117
+ F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
118
+ * self.codebook_loss_weight
119
+ )
120
+
121
+ else:
122
+ commit_loss = torch.zeros(0, device=z.device)
123
+ codebook_loss = torch.zeros(0, device=z.device)
124
+
125
+ z_q = (
126
+ z_e + (z_q - z_e).detach()
127
+ ) # noop in forward pass, straight-through gradient estimator in backward pass
128
+
129
+ z_q = self.out_project(z_q)
130
+
131
+ vq_loss = (commit_loss + codebook_loss).mean()
132
+
133
+ return {
134
+ "z_q": z_q,
135
+ "indices": indices,
136
+ "dists": dists,
137
+ "vq_loss": vq_loss,
138
+ "perplexity": perplexity,
139
+ "active_num": active_num.float(),
140
+ }
141
+
142
+ def vq2emb(self, vq, out_proj=True):
143
+ emb = self.embed_code(vq)
144
+ if out_proj:
145
+ emb = self.out_project(emb)
146
+ return emb
147
+
148
+ def tokenize(self, z: torch.Tensor) -> torch.Tensor:
149
+ """tokenize the input tensor"""
150
+ z_e = self.in_project(z)
151
+ _, indices, _ = self.decode_latents(z_e)
152
+ return indices
153
+
154
+ def detokenize(self, indices):
155
+ """detokenize the input indices"""
156
+ z_q = self.decode_code(indices)
157
+ z_q = self.out_project(z_q)
158
+ return z_q
159
+
160
+ def get_emb(self):
161
+ return self.codebook.weight
162
+
163
+ def embed_code(self, embed_id):
164
+ return F.embedding(embed_id, self.codebook.weight)
165
+
166
+ def decode_code(self, embed_id):
167
+ return self.embed_code(embed_id).transpose(1, 2)
168
+
169
+ def decode_latents(self, latents):
170
+ encodings = rearrange(latents, "b d t -> (b t) d")
171
+ codebook = self.codebook.weight
172
+
173
+ # L2 normalize encodings and codebook
174
+ encodings = F.normalize(encodings)
175
+ codebook = F.normalize(codebook)
176
+
177
+ # Compute euclidean distance between encodings and codebook,
178
+ # with L2 normalization, the distance is equal to cosine distance
179
+ dist = (
180
+ encodings.pow(2).sum(1, keepdim=True)
181
+ - 2 * encodings @ codebook.t()
182
+ + codebook.pow(2).sum(1, keepdim=True).t()
183
+ )
184
+ indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
185
+ z_q = self.decode_code(indices)
186
+
187
+ return z_q, indices, dist
sparktts/utils/__init__.py ADDED
File without changes
sparktts/utils/audio.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Description:
17
+ This script contains a collection of functions designed to handle various
18
+ audio processing.
19
+ """
20
+
21
+ import random
22
+ import soxr
23
+ import soundfile
24
+ import torch
25
+ import torchaudio
26
+ import numpy as np
27
+
28
+ from pathlib import Path
29
+ from typing import Tuple
30
+ from numpy.lib.stride_tricks import sliding_window_view
31
+
32
+
33
+ def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray:
34
+ """
35
+ Normalize the volume of an audio signal.
36
+
37
+ Parameters:
38
+ audio (numpy array): Input audio signal array.
39
+ coeff (float): Target coefficient for normalization, default is 0.2.
40
+
41
+ Returns:
42
+ numpy array: The volume-normalized audio signal.
43
+ """
44
+ # Sort the absolute values of the audio signal
45
+ temp = np.sort(np.abs(audio))
46
+
47
+ # If the maximum value is less than 0.1, scale the array to have a maximum of 0.1
48
+ if temp[-1] < 0.1:
49
+ scaling_factor = max(
50
+ temp[-1], 1e-3
51
+ ) # Prevent division by zero with a small constant
52
+ audio = audio / scaling_factor * 0.1
53
+
54
+ # Filter out values less than 0.01 from temp
55
+ temp = temp[temp > 0.01]
56
+ L = temp.shape[0] # Length of the filtered array
57
+
58
+ # If there are fewer than or equal to 10 significant values, return the audio without further processing
59
+ if L <= 10:
60
+ return audio
61
+
62
+ # Compute the average of the top 10% to 1% of values in temp
63
+ volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])
64
+
65
+ # Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10
66
+ audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)
67
+
68
+ # Ensure the maximum absolute value in the audio does not exceed 1
69
+ max_value = np.max(np.abs(audio))
70
+ if max_value > 1:
71
+ audio = audio / max_value
72
+
73
+ return audio
74
+
75
+
76
+ def load_audio(
77
+ adfile: Path,
78
+ sampling_rate: int = None,
79
+ length: int = None,
80
+ volume_normalize: bool = False,
81
+ segment_duration: int = None,
82
+ ) -> np.ndarray:
83
+ r"""Load audio file with target sampling rate and lsength
84
+
85
+ Args:
86
+ adfile (Path): path to audio file.
87
+ sampling_rate (int, optional): target sampling rate. Defaults to None.
88
+ length (int, optional): target audio length. Defaults to None.
89
+ volume_normalize (bool, optional): whether perform volume normalization. Defaults to False.
90
+ segment_duration (int): random select a segment with duration of {segment_duration}s.
91
+ Defualt to None which means the whole audio will be used.
92
+
93
+ Returns:
94
+ audio (np.ndarray): audio
95
+ """
96
+
97
+ audio, sr = soundfile.read(adfile)
98
+ if len(audio.shape) > 1:
99
+ audio = audio[:, 0]
100
+
101
+ if sampling_rate is not None and sr != sampling_rate:
102
+ audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ")
103
+ sr = sampling_rate
104
+
105
+ if segment_duration is not None:
106
+ seg_length = int(sr * segment_duration)
107
+ audio = random_select_audio_segment(audio, seg_length)
108
+
109
+ # Audio volume normalize
110
+ if volume_normalize:
111
+ audio = audio_volume_normalize(audio)
112
+ # check the audio length
113
+ if length is not None:
114
+ assert abs(audio.shape[0] - length) < 1000
115
+ if audio.shape[0] > length:
116
+ audio = audio[:length]
117
+ else:
118
+ audio = np.pad(audio, (0, int(length - audio.shape[0])))
119
+ return audio
120
+
121
+
122
+ def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray:
123
+ """get an audio segment given the length
124
+
125
+ Args:
126
+ audio (np.ndarray):
127
+ length (int): audio length = sampling_rate * duration
128
+ """
129
+ if audio.shape[0] < length:
130
+ audio = np.pad(audio, (0, int(length - audio.shape[0])))
131
+ start_index = random.randint(0, audio.shape[0] - length)
132
+ end_index = int(start_index + length)
133
+
134
+ return audio[start_index:end_index]
135
+
136
+
137
+ def audio_highpass_filter(audio, sample_rate, highpass_cutoff_freq):
138
+ """apply highpass fileter to audio
139
+
140
+ Args:
141
+ audio (np.ndarray):
142
+ sample_rate (ind):
143
+ highpass_cutoff_freq (int):
144
+ """
145
+
146
+ audio = torchaudio.functional.highpass_biquad(
147
+ torch.from_numpy(audio), sample_rate, cutoff_freq=highpass_cutoff_freq
148
+ )
149
+ return audio.numpy()
150
+
151
+
152
+ def stft(
153
+ x: torch.Tensor,
154
+ fft_size: int,
155
+ hop_size: int,
156
+ win_length: int,
157
+ window: str,
158
+ use_complex: bool = False,
159
+ ) -> torch.Tensor:
160
+ """Perform STFT and convert to magnitude spectrogram.
161
+ Args:
162
+ x (Tensor): Input signal tensor (B, T).
163
+ fft_size (int): FFT size.
164
+ hop_size (int): Hop size.
165
+ win_length (int): Window length.
166
+ window (str): Window function type.
167
+ Returns:
168
+ Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
169
+ """
170
+
171
+ x_stft = torch.stft(
172
+ x, fft_size, hop_size, win_length, window.to(x.device), return_complex=True
173
+ )
174
+
175
+ # clamp is needed to avoid nan or inf
176
+ if not use_complex:
177
+ return torch.sqrt(
178
+ torch.clamp(x_stft.real**2 + x_stft.imag**2, min=1e-7, max=1e3)
179
+ ).transpose(2, 1)
180
+ else:
181
+ res = torch.cat([x_stft.real.unsqueeze(1), x_stft.imag.unsqueeze(1)], dim=1)
182
+ res = res.transpose(2, 3) # [B, 2, T, F]
183
+ return res
184
+
185
+
186
+ def detect_speech_boundaries(
187
+ wav: np.ndarray,
188
+ sample_rate: int,
189
+ window_duration: float = 0.1,
190
+ energy_threshold: float = 0.01,
191
+ margin_factor: int = 2
192
+ ) -> Tuple[int, int]:
193
+ """Detect the start and end points of speech in an audio signal using RMS energy.
194
+
195
+ Args:
196
+ wav: Input audio signal array with values in [-1, 1]
197
+ sample_rate: Audio sample rate in Hz
198
+ window_duration: Duration of detection window in seconds
199
+ energy_threshold: RMS energy threshold for speech detection
200
+ margin_factor: Factor to determine extra margin around detected boundaries
201
+
202
+ Returns:
203
+ tuple: (start_index, end_index) of speech segment
204
+
205
+ Raises:
206
+ ValueError: If the audio contains only silence
207
+ """
208
+ window_size = int(window_duration * sample_rate)
209
+ margin = margin_factor * window_size
210
+ step_size = window_size // 10
211
+
212
+ # Create sliding windows using stride tricks to avoid loops
213
+ windows = sliding_window_view(wav, window_size)[::step_size]
214
+
215
+ # Calculate RMS energy for each window
216
+ energy = np.sqrt(np.mean(windows ** 2, axis=1))
217
+ speech_mask = energy >= energy_threshold
218
+
219
+ if not np.any(speech_mask):
220
+ raise ValueError("No speech detected in audio (only silence)")
221
+
222
+ start = max(0, np.argmax(speech_mask) * step_size - margin)
223
+ end = min(len(wav), (len(speech_mask) - 1 - np.argmax(speech_mask[::-1])) * step_size + margin)
224
+
225
+ return start, end
226
+
227
+
228
+ def remove_silence_on_both_ends(
229
+ wav: np.ndarray,
230
+ sample_rate: int,
231
+ window_duration: float = 0.1,
232
+ volume_threshold: float = 0.01
233
+ ) -> np.ndarray:
234
+ """Remove silence from both ends of an audio signal.
235
+
236
+ Args:
237
+ wav: Input audio signal array
238
+ sample_rate: Audio sample rate in Hz
239
+ window_duration: Duration of detection window in seconds
240
+ volume_threshold: Amplitude threshold for silence detection
241
+
242
+ Returns:
243
+ np.ndarray: Audio signal with silence removed from both ends
244
+
245
+ Raises:
246
+ ValueError: If the audio contains only silence
247
+ """
248
+ start, end = detect_speech_boundaries(
249
+ wav,
250
+ sample_rate,
251
+ window_duration,
252
+ volume_threshold
253
+ )
254
+ return wav[start:end]
255
+
256
+
257
+
258
+ def hertz_to_mel(pitch: float) -> float:
259
+ """
260
+ Converts a frequency from the Hertz scale to the Mel scale.
261
+
262
+ Parameters:
263
+ - pitch: float or ndarray
264
+ Frequency in Hertz.
265
+
266
+ Returns:
267
+ - mel: float or ndarray
268
+ Frequency in Mel scale.
269
+ """
270
+ mel = 2595 * np.log10(1 + pitch / 700)
271
+ return mel
sparktts/utils/file.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 SparkAudio
2
+ # 2025 Xinsheng Wang ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Description:
17
+ This script contains a collection of functions designed to handle various
18
+ file reading and writing operations. It provides utilities to read from files,
19
+ write data to files, and perform file manipulation tasks.
20
+ """
21
+
22
+
23
+ import os
24
+ import json
25
+ import json
26
+ import csv
27
+
28
+ from tqdm import tqdm
29
+ from typing import List, Dict, Any, Set, Union
30
+ from pathlib import Path
31
+ from omegaconf import OmegaConf, DictConfig
32
+
33
+
34
+ def resolve_symbolic_link(symbolic_link_path: Path) -> Path:
35
+ """
36
+ Resolves the absolute path of a symbolic link.
37
+
38
+ Args:
39
+ symbolic_link_path (Path): The path to the symbolic link.
40
+
41
+ Returns:
42
+ Path: The absolute path that the symbolic link points to.
43
+ """
44
+
45
+ link_directory = os.path.dirname(symbolic_link_path)
46
+ target_path_relative = os.readlink(symbolic_link_path)
47
+ return os.path.join(link_directory, target_path_relative)
48
+
49
+
50
+ def write_jsonl(metadata: List[dict], file_path: Path) -> None:
51
+ """Writes a list of dictionaries to a JSONL file.
52
+
53
+ Args:
54
+ metadata : List[dict]
55
+ A list of dictionaries, each representing a piece of meta.
56
+ file_path : Path
57
+ The file path to save the JSONL file
58
+
59
+ This function writes each dictionary in the list to a new line in the specified file.
60
+ """
61
+ with open(file_path, "w", encoding="utf-8") as f:
62
+ for meta in tqdm(metadata, desc="writing jsonl"):
63
+ # Convert dictionary to JSON string and write it to the file with a newline
64
+ json_str = json.dumps(meta, ensure_ascii=False) + "\n"
65
+ f.write(json_str)
66
+ print(f"jsonl saved to {file_path}")
67
+
68
+
69
+ def read_jsonl(file_path: Path) -> List[dict]:
70
+ """
71
+ Reads a JSONL file and returns a list of dictionaries.
72
+
73
+ Args:
74
+ file_path : Path
75
+ The path to the JSONL file to be read.
76
+
77
+ Returns:
78
+ List[dict]
79
+ A list of dictionaries parsed from each line of the JSONL file.
80
+ """
81
+ metadata = []
82
+ # Open the file for reading
83
+ with open(file_path, "r", encoding="utf-8") as f:
84
+ # Split the file into lines
85
+ lines = f.read().splitlines()
86
+ # Process each line
87
+ for line in lines:
88
+ # Convert JSON string back to dictionary and append to list
89
+ meta = json.loads(line)
90
+ metadata.append(meta)
91
+ # Return the list of metadata
92
+ return metadata
93
+
94
+ def read_json_as_jsonl(file_path: Path) -> List[dict]:
95
+ metadata = []
96
+ with open(file_path, 'r', encoding='utf-8') as infile:
97
+ data = json.load(infile)
98
+ for k in sorted(data.keys()):
99
+ meta = {'index': k}
100
+ meta.update(data[k])
101
+ metadata.append(meta)
102
+ return metadata
103
+
104
+
105
+
106
+ def decode_unicode_strings(meta: Dict[str, Any]) -> Dict[str, Any]:
107
+ processed_meta = {}
108
+ for k, v in meta.items():
109
+ if isinstance(v, str):
110
+ processed_meta[k] = v.encode("utf-8").decode("unicode_escape")
111
+ else:
112
+ processed_meta[k] = v
113
+ return processed_meta
114
+
115
+
116
+ def load_config(config_path: Path) -> DictConfig:
117
+ """Loads a configuration file and optionally merges it with a base configuration.
118
+
119
+ Args:
120
+ config_path (Path): Path to the configuration file.
121
+ """
122
+ # Load the initial configuration from the given path
123
+ config = OmegaConf.load(config_path)
124
+
125
+ # Check if there is a base configuration specified and merge if necessary
126
+ if config.get("base_config", None) is not None:
127
+ base_config = OmegaConf.load(config["base_config"])
128
+ config = OmegaConf.merge(base_config, config)
129
+
130
+ return config
131
+
132
+
133
+
134
+ def jsonl_to_csv(jsonl_file_path: str, csv_file_path: str) -> None:
135
+ """
136
+ Converts a JSONL file to a CSV file.
137
+
138
+ This function reads a JSONL file, determines all unique keys present in the file,
139
+ and writes the data to a CSV file with columns for all these keys.
140
+ """
141
+
142
+ all_keys = set()
143
+ data_rows = []
144
+
145
+ # Read the JSONL file once to extract keys and collect data
146
+ with open(jsonl_file_path, 'r') as file:
147
+ for line in file:
148
+ data = json.loads(line.strip())
149
+ data_rows.append(data)
150
+ all_keys.update(data.keys())
151
+
152
+ # Convert the set of keys to a sorted list for consistent column order
153
+ sorted_keys = sorted(all_keys)
154
+
155
+ # Write the data to a CSV file
156
+ with open(csv_file_path, 'w', newline='') as csvfile:
157
+ writer = csv.DictWriter(csvfile, fieldnames=sorted_keys)
158
+
159
+ # Write the header row
160
+ writer.writeheader()
161
+
162
+ # Write each row of data
163
+ for data in data_rows:
164
+ writer.writerow(data)
165
+
166
+ print(f"CSV file has been created at {csv_file_path}")
167
+
168
+
169
+ def save_metadata(data, filename, headers=None):
170
+ """
171
+ Save metadata to a file.
172
+
173
+ Args:
174
+ data (list of dict): Metadata to be saved.
175
+ filename (str): Name of the file to save the metadata.
176
+ headers (list of str): The order of column names to be saved; defaults to the keys from the first dictionary in data if not provided.
177
+ """
178
+ # Set headers to keys from the first dictionary in data if not explicitly provided
179
+ if headers is None:
180
+ headers = list(data[0].keys())
181
+
182
+ with open(filename, "w", encoding="utf-8") as file:
183
+ # Write the headers to the file
184
+ file.write("|".join(headers) + "\n")
185
+ for entry in data:
186
+ # Retrieve values in the order of headers, replacing any '|' characters with a space to prevent formatting errors
187
+ formatted_values = [str(entry.get(key, "")).replace("|", " ") for key in headers]
188
+ # Write the formatted values to the file
189
+ file.write("|".join(formatted_values) + "\n")
190
+
191
+
192
+ def read_metadata(filename, headers=None):
193
+ """
194
+ Read metadata from a file.
195
+
196
+ Args:
197
+ filename (str): The file from which to read the metadata.
198
+
199
+ Returns:
200
+ list of dict: The metadata read from the file.
201
+ list of str: The headers used in the file.
202
+ """
203
+ with open(filename, "r", encoding="utf-8") as file:
204
+ lines = file.readlines()
205
+
206
+ data = []
207
+ # Set headers from the first line of the file if not provided
208
+ if headers is None:
209
+ headers = lines[0].strip().split("|")
210
+ lines = lines[1:]
211
+
212
+ for line in lines:
213
+ line = line.strip()
214
+ # Skip empty lines
215
+ if not line:
216
+ continue
217
+ # Split the line by '|' and pair with headers to form a dictionary
218
+ entry_data = dict(zip(headers, line.split("|")))
219
+ data.append(entry_data)
220
+
221
+ return data, headers
sparktts/utils/parse_options.sh ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Copyright 2012 Johns Hopkins University (Author: Daniel Povey);
4
+ # Arnab Ghoshal, Karel Vesely
5
+
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
13
+ # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
14
+ # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
15
+ # MERCHANTABLITY OR NON-INFRINGEMENT.
16
+ # See the Apache 2 License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+
20
+ # Parse command-line options.
21
+ # To be sourced by another script (as in ". parse_options.sh").
22
+ # Option format is: --option-name arg
23
+ # and shell variable "option_name" gets set to value "arg."
24
+ # The exception is --help, which takes no arguments, but prints the
25
+ # $help_message variable (if defined).
26
+
27
+
28
+ ###
29
+ ### The --config file options have lower priority to command line
30
+ ### options, so we need to import them first...
31
+ ###
32
+
33
+ # Now import all the configs specified by command-line, in left-to-right order
34
+ # for ((argpos=1; argpos<$#; argpos++)); do
35
+ # if [ "${!argpos}" == "--config" ]; then
36
+ # argpos_plus1=$((argpos+1))
37
+ # config=${!argpos_plus1}
38
+ # [ ! -r $config ] && echo "$0: missing config '$config'" && exit 1
39
+ # . $config # source the config file.
40
+ # fi
41
+ # done
42
+
43
+
44
+ ###
45
+ ### No we process the command line options
46
+ ###
47
+ while true; do
48
+ [ -z "${1:-}" ] && break; # break if there are no arguments
49
+ case "$1" in
50
+ # If the enclosing script is called with --help option, print the help
51
+ # message and exit. Scripts should put help messages in $help_message
52
+ --help|-h) if [ -z "$help_message" ]; then echo "No help found." 1>&2;
53
+ else printf "$help_message\n" 1>&2 ; fi;
54
+ exit 0 ;;
55
+ --*=*) echo "$0: options to scripts must be of the form --name value, got '$1'"
56
+ exit 1 ;;
57
+ # If the first command-line argument begins with "--" (e.g. --foo-bar),
58
+ # then work out the variable name as $name, which will equal "foo_bar".
59
+ --*) name=`echo "$1" | sed s/^--// | sed s/-/_/g`;
60
+ # Next we test whether the variable in question is undefned-- if so it's
61
+ # an invalid option and we die. Note: $0 evaluates to the name of the
62
+ # enclosing script.
63
+ # The test [ -z ${foo_bar+xxx} ] will return true if the variable foo_bar
64
+ # is undefined. We then have to wrap this test inside "eval" because
65
+ # foo_bar is itself inside a variable ($name).
66
+ eval '[ -z "${'$name'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
67
+
68
+ oldval="`eval echo \\$$name`";
69
+ # Work out whether we seem to be expecting a Boolean argument.
70
+ if [ "$oldval" == "true" ] || [ "$oldval" == "false" ]; then
71
+ was_bool=true;
72
+ else
73
+ was_bool=false;
74
+ fi
75
+
76
+ # Set the variable to the right value-- the escaped quotes make it work if
77
+ # the option had spaces, like --cmd "queue.pl -sync y"
78
+ eval $name=\"$2\";
79
+
80
+ # Check that Boolean-valued arguments are really Boolean.
81
+ if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
82
+ echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
83
+ exit 1;
84
+ fi
85
+ shift 2;
86
+ ;;
87
+ *) break;
88
+ esac
89
+ done
90
+
91
+
92
+ # Check for an empty argument to the --cmd option, which can easily occur as a
93
+ # result of scripting errors.
94
+ [ ! -z "${cmd+xxx}" ] && [ -z "$cmd" ] && echo "$0: empty argument to --cmd option" 1>&2 && exit 1;
95
+
96
+
97
+ true; # so this script returns exit code 0.
sparktts/utils/token_parser.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TASK_TOKEN_MAP = {
2
+ "vc": "<|task_vc|>",
3
+ "tts": "<|task_tts|>",
4
+ "asr": "<|task_asr|>",
5
+ "s2s": "<|task_s2s|>",
6
+ "t2s": "<|task_t2s|>",
7
+ "understand": "<|task_understand|>",
8
+ "caption": "<|task_cap|>",
9
+ "controllable_tts": "<|task_controllable_tts|>",
10
+ "prompt_tts": "<|task_prompt_tts|>",
11
+ "speech_edit": "<|task_edit|>",
12
+ }
13
+
14
+ LEVELS_MAP = {
15
+ "very_low": 0,
16
+ "low": 1,
17
+ "moderate": 2,
18
+ "high": 3,
19
+ "very_high": 4,
20
+ }
21
+
22
+ LEVELS_MAP_UI = {
23
+ 1: 'very_low',
24
+ 2: 'low',
25
+ 3: 'moderate',
26
+ 4: 'high',
27
+ 5: 'very_high'
28
+ }
29
+
30
+ GENDER_MAP = {
31
+ "female": 0,
32
+ "male": 1,
33
+ }
34
+
35
+ AGE_MAP = {"Child": 0, "Teenager": 1, "Youth-Adult": 2, "Middle-aged": 3, "Elderly": 4}
36
+
37
+ EMO_MAP = {
38
+ "UNKNOWN": 0,
39
+ "NEUTRAL": 1,
40
+ "ANGRY": 2,
41
+ "HAPPY": 3,
42
+ "SAD": 4,
43
+ "FEARFUL": 5,
44
+ "DISGUSTED": 6,
45
+ "SURPRISED": 7,
46
+ "SARCASTIC": 8,
47
+ "EXCITED": 9,
48
+ "SLEEPY": 10,
49
+ "CONFUSED": 11,
50
+ "EMPHASIS": 12,
51
+ "LAUGHING": 13,
52
+ "SINGING": 14,
53
+ "WORRIED": 15,
54
+ "WHISPER": 16,
55
+ "ANXIOUS": 17,
56
+ "NO-AGREEMENT": 18,
57
+ "APOLOGETIC": 19,
58
+ "CONCERNED": 20,
59
+ "ENUNCIATED": 21,
60
+ "ASSERTIVE": 22,
61
+ "ENCOURAGING": 23,
62
+ "CONTEMPT": 24,
63
+ }
64
+
65
+
66
+ class TokenParser:
67
+ """Turn label to special token"""
68
+
69
+ def __init__(self):
70
+ pass
71
+
72
+ """Parse the attributes of a person."""
73
+
74
+ def __init__(self):
75
+ pass
76
+
77
+ @staticmethod
78
+ def age(age: str) -> str:
79
+ """Turn age token."""
80
+ age_id = AGE_MAP[age]
81
+ return f"<|age_{age_id}|>"
82
+
83
+ @staticmethod
84
+ def gender(gender: str) -> str:
85
+ """Turn gender token."""
86
+ gender_id = GENDER_MAP[gender]
87
+ return f"<|gender_{gender_id}|>"
88
+
89
+ @staticmethod
90
+ def mel_value(mel: int):
91
+ """Turn special token of mel scale pitch."""
92
+ mel = max(0, int(mel))
93
+ mel = min(1000, int(mel))
94
+ return f"<|pitch_value_{mel}|>"
95
+
96
+ @staticmethod
97
+ def mel_level(level: str):
98
+ """Turn special token of mel level."""
99
+ level_tag = LEVELS_MAP[level]
100
+ return f"<|pitch_label_{level_tag}|>"
101
+
102
+ @staticmethod
103
+ def pitch_var_value(pitch_std: int):
104
+ """Turn special token of pitch_std value."""
105
+ assert isinstance(pitch_std, int)
106
+ pitch_std = max(0, int(pitch_std))
107
+ pitch_std = min(10, int(pitch_std))
108
+ return f"<|pitch_var_value_{pitch_std}|>"
109
+
110
+ @staticmethod
111
+ def pitch_var_level(level: str):
112
+ """Turn special token of pitch std level."""
113
+ level_tag = LEVELS_MAP[level]
114
+ return f"<|pitch_var_label_{level_tag}|>"
115
+
116
+ @staticmethod
117
+ def loudness_value(loudness: int):
118
+ """Turn special toak of loudness value [0, 30]"""
119
+ assert loudness >= 0
120
+ loudness = max(0, int(loudness))
121
+ loudness = min(30, int(loudness))
122
+ return f"<|loudness_value_{loudness}|>"
123
+
124
+ @staticmethod
125
+ def loudness_level(level: str):
126
+ """Turn special token of loudness level."""
127
+ level_tag = LEVELS_MAP[level]
128
+ return f"<|loudness_label_{level_tag}|>"
129
+
130
+ @staticmethod
131
+ def speed_value(speed: int):
132
+ """Turn special token of speed value."""
133
+ speed = max(0, int(speed))
134
+ speed = min(10, int(speed))
135
+ return f"<|speed_value_{speed}|>"
136
+
137
+ @staticmethod
138
+ def speed_level(level: str):
139
+ """Turn special token of speed level."""
140
+ level_tag = LEVELS_MAP[level]
141
+ return f"<|speed_label_{level_tag}|>"
142
+
143
+ @staticmethod
144
+ def task(task: str) -> str:
145
+ """Turn special token of task."""
146
+ assert task in TASK_TOKEN_MAP.keys()
147
+
148
+ return TASK_TOKEN_MAP[task]
149
+
150
+ @staticmethod
151
+ def emotion(emotion: str):
152
+ emo_id = EMO_MAP[emotion]
153
+
154
+ return f"<|emotion_{emo_id}|>"
155
+
156
+
157
+ # test
158
+ if __name__ == "__main__":
159
+ from transformers import AutoTokenizer
160
+
161
+ tokenizer = AutoTokenizer.from_pretrained(
162
+ "/aifs4su/xinshengwang/code/StyleCraft/tokenizer/stylecraft-bicodec-pitch-loudness-speed-emotion-tokenizer"
163
+ )
164
+
165
+ tasks = ["tts", "tts", "understand", "controllable_tts", "prompt_tts"]
166
+ ages = ["Child", "Teenager", "Youth-Adult", "Middle-aged", "Elderly"]
167
+ genders = ["female", "female", "female", "male", "male"]
168
+ mels = [100, 200, 300, 400, 500]
169
+ mel_levels = ["very_low", "low", "moderate", "high", "very_high"]
170
+ loudnesses = [1, 10, 23, 19, 30]
171
+ loudness_levels = ["very_low", "low", "moderate", "high", "very_high"]
172
+ emotions = ["UNKNOWN", "NEUTRAL", "ANGRY", "HAPPY", "SAD"]
173
+
174
+ for i in range(5):
175
+ task = TokenParser.task(tasks[i])
176
+ age = TokenParser.age(ages[i])
177
+ gender = TokenParser.gender(genders[i])
178
+ mel = TokenParser.mel_value(mels[i])
179
+ mel_level = TokenParser.mel_level(mel_levels[i])
180
+ loudness = TokenParser.loudness_value(loudnesses[i])
181
+ loudness_level = TokenParser.loudness_level(loudness_levels[i])
182
+ emotion = TokenParser.emotion(emotions[i])
183
+ inputs = [task, age, gender, mel, mel_level, loudness, loudness_level, emotion]
184
+ inputs = "".join(inputs)
185
+ ids = tokenizer.encode(inputs, add_special_tokens=False)
186
+ print(ids)
187
+ print("decode", tokenizer.decode(ids))
webui.py CHANGED
@@ -268,3 +268,5 @@ if __name__ == "__main__":
268
  server_port=args.server_port,
269
  share=True
270
  )
 
 
 
268
  server_port=args.server_port,
269
  share=True
270
  )
271
+ server_port=args.server_port
272
+ )