|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from typing import Tuple |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
|
|
from typing import Optional |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
intermediate_dim (int): Dimensionality of the intermediate layer. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional LayerNorm. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
intermediate_dim: int, |
|
layer_scale_init_value: float, |
|
condition_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.dwconv = nn.Conv1d( |
|
dim, dim, kernel_size=7, padding=3, groups=dim |
|
) |
|
self.adanorm = condition_dim is not None |
|
if condition_dim: |
|
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear( |
|
dim, intermediate_dim |
|
) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(intermediate_dim, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward( |
|
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
residual = x |
|
x = self.dwconv(x) |
|
x = x.transpose(1, 2) |
|
if self.adanorm: |
|
assert cond_embedding_id is not None |
|
x = self.norm(x, cond_embedding_id) |
|
else: |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.transpose(1, 2) |
|
|
|
x = residual + x |
|
return x |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes |
|
|
|
Args: |
|
condition_dim (int): Dimension of the condition. |
|
embedding_dim (int): Dimension of the embeddings. |
|
""" |
|
|
|
def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.dim = embedding_dim |
|
self.scale = nn.Linear(condition_dim, embedding_dim) |
|
self.shift = nn.Linear(condition_dim, embedding_dim) |
|
torch.nn.init.ones_(self.scale.weight) |
|
torch.nn.init.zeros_(self.shift.weight) |
|
|
|
def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor: |
|
scale = self.scale(cond_embedding) |
|
shift = self.shift(cond_embedding) |
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) |
|
x = x * scale.unsqueeze(1) + shift.unsqueeze(1) |
|
return x |
|
|
|
|
|
class ResBlock1(nn.Module): |
|
""" |
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, |
|
but without upsampling layers. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. |
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. |
|
Defaults to (1, 3, 5). |
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. |
|
Defaults to 0.1. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
kernel_size: int = 3, |
|
dilation: Tuple[int, int, int] = (1, 3, 5), |
|
lrelu_slope: float = 0.1, |
|
layer_scale_init_value: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.lrelu_slope = lrelu_slope |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=self.get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=self.get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=self.get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.gamma = nn.ParameterList( |
|
[ |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): |
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) |
|
xt = c1(xt) |
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) |
|
xt = c2(xt) |
|
if gamma is not None: |
|
xt = gamma * xt |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
@staticmethod |
|
def get_padding(kernel_size: int, dilation: int = 1) -> int: |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
class Backbone(nn.Module): |
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, |
|
C denotes output features, and L is the sequence length. |
|
|
|
Returns: |
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, |
|
and H denotes the model dimension. |
|
""" |
|
raise NotImplementedError("Subclasses must implement the forward method.") |
|
|
|
|
|
class VocosBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. |
|
num_layers (int): Number of ConvNeXtBlock layers. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional model. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
dim: int, |
|
intermediate_dim: int, |
|
num_layers: int, |
|
layer_scale_init_value: Optional[float] = None, |
|
condition_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) |
|
self.adanorm = condition_dim is not None |
|
if condition_dim: |
|
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers |
|
self.convnext = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
dim=dim, |
|
intermediate_dim=intermediate_dim, |
|
layer_scale_init_value=layer_scale_init_value, |
|
condition_dim=condition_dim, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv1d, nn.Linear)): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor: |
|
x = self.embed(x) |
|
if self.adanorm: |
|
assert condition is not None |
|
x = self.norm(x.transpose(1, 2), condition) |
|
else: |
|
x = self.norm(x.transpose(1, 2)) |
|
x = x.transpose(1, 2) |
|
for conv_block in self.convnext: |
|
x = conv_block(x, condition) |
|
x = self.final_layer_norm(x.transpose(1, 2)) |
|
return x |
|
|
|
|
|
class VocosResNetBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ResBlocks. |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
num_blocks (int): Number of ResBlock1 blocks. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels, |
|
dim, |
|
num_blocks, |
|
layer_scale_init_value=None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = weight_norm( |
|
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) |
|
) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 |
|
self.resnet = nn.Sequential( |
|
*[ |
|
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) |
|
for _ in range(num_blocks) |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = self.embed(x) |
|
x = self.resnet(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|