File size: 2,161 Bytes
263ac2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) 2025 SparkAudio
#               2025 Xinsheng Wang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0


import torch
import torch.nn as nn
from torch.nn.utils import weight_norm


def WNConv1d(*args, **kwargs):
    return weight_norm(nn.Conv1d(*args, **kwargs))


def WNConvTranspose1d(*args, **kwargs):
    return weight_norm(nn.ConvTranspose1d(*args, **kwargs))


# Scripting this brings model speed up 1.4x
@torch.jit.script
def snake(x, alpha):
    shape = x.shape
    x = x.reshape(shape[0], shape[1], -1)
    x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
    x = x.reshape(shape)
    return x


class Snake1d(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.alpha = nn.Parameter(torch.ones(1, channels, 1))

    def forward(self, x):
        return snake(x, self.alpha)


class ResidualUnit(nn.Module):
    def __init__(self, dim: int = 16, dilation: int = 1):
        super().__init__()
        pad = ((7 - 1) * dilation) // 2
        self.block = nn.Sequential(
            Snake1d(dim),
            WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
            Snake1d(dim),
            WNConv1d(dim, dim, kernel_size=1),
        )

    def forward(self, x):
        y = self.block(x)
        pad = (x.shape[-1] - y.shape[-1]) // 2
        if pad > 0:
            x = x[..., pad:-pad]
        return x + y


def init_weights(m):
    if isinstance(m, nn.Conv1d):
        nn.init.trunc_normal_(m.weight, std=0.02)
        nn.init.constant_(m.bias, 0)