import torch from diffusers import StableDiffusion3Pipeline import gradio as gr import os import spaces from huggingface_hub import snapshot_download HF_TOKEN = os.getenv("HF_TOKEN") model_path = snapshot_download( repo_id="stabilityai/stable-diffusion-3-medium", revision="refs/pr/26", repo_type="model", ignore_patterns=["*.md", "*..gitattributes"], local_dir="stable-diffusion-3-medium", token=HF_TOKEN, ) if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") # Initialize the pipeline and download the model pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe.to(device) # Define the image generation function @spaces.GPU(duration=60) def generate_image(prompt): image = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, height=height, width=width, guidance_scale=guidance_scale, ).images[0] return image # Create the Gradio interface prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...") negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", placeholder="Ugly, bad anatomy...") num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25) height = gr.Number(label="Number of Inference Steps", precision=0, value=1024) width = gr.Number(label="Number of Inference Steps", precision=0, value=1024) guidance_scale = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") interface = gr.Interface( fn=generate_image, inputs=[prompt, negative_prompt, num_inference_steps, height, width, guidance_scale] outputs="image", title="Stable Diffusion 3 Medium", description="Made by [Nick088](https://linktr.ee/Nick088" ) # Launch the interface interface.launch(share=False)