File size: 2,564 Bytes
5252609
827c867
5252609
925b9c1
5252609
5abbc9d
5252609
5abbc9d
 
 
 
 
 
 
 
 
 
925b9c1
5252609
 
 
 
 
 
 
 
5abbc9d
5252609
 
 
 
828375c
988a34b
827c867
 
 
 
 
 
828375c
988a34b
 
5252609
 
827c867
 
 
 
 
 
 
828375c
827c867
828375c
827c867
 
 
828375c
 
5252609
 
828375c
5252609
 
988a34b
5252609
 
 
e8e6d43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
from diffusers import StableDiffusion3Pipeline
import gradio as gr
import os
import spaces
from huggingface_hub import snapshot_download

HF_TOKEN = os.getenv("HF_TOKEN")

model_path = snapshot_download(
    repo_id="stabilityai/stable-diffusion-3-medium", 
    revision="refs/pr/26",
    repo_type="model", 
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="stable-diffusion-3-medium",
    token=HF_TOKEN,
    )

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")

# Initialize the pipeline and download the model
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.to(device)

# Define the image generation function
@spaces.GPU(duration=60)
def generate_image(prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, num_images_per_prompt):
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images_per_prompt
    ).images
    return output

# Create the Gradio interface

prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...")

negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", placeholder="Ugly, bad anatomy...")

num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25)

height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum="1536", step=32, value=1024)

width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum="1536", step=32, value=1024)

guidance_scale = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference")

num_images_per_prompt = gr.Slider(label="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1)

interface = gr.Interface(
    fn=generate_image,
    inputs=[prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, num_images_per_prompt],
    outputs="image",
    title="Stable Diffusion 3 Medium",
    description="Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a> \n Join https://discord.gg/osai to talk about Open Source AI"
)

# Launch the interface
interface.launch(share = False)