File size: 6,054 Bytes
5a98598
 
 
 
 
956ab2c
 
5a98598
956ab2c
 
 
 
 
 
 
 
 
 
 
 
 
5a98598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
956ab2c
5a98598
 
956ab2c
020b18b
 
 
956ab2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020b18b
 
 
 
 
 
 
 
 
 
956ab2c
5a98598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7168226
5a98598
 
 
 
 
 
 
 
 
 
 
 
 
956ab2c
 
5a98598
 
956ab2c
 
5a98598
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import gradio as gr
import pandas as pd
from datetime import datetime
import time
import sys
import importlib.util
import threading
from log_reader import RemoteLogReader

# Define the path for the azure_count_ip_data module
azure_count_ip_data_path = os.path.join(os.path.dirname(__file__), 'azure_count_ip_data.py')

# Import the module dynamically
spec = importlib.util.spec_from_file_location("azure_count_ip_data", azure_count_ip_data_path)
azure_count_ip_data = importlib.util.module_from_spec(spec)
spec.loader.exec_module(azure_count_ip_data)

# Get the functions we need
count_files_per_annotator = azure_count_ip_data.count_files_per_annotator
count_deduplicated_files_per_annotator = azure_count_ip_data.count_deduplicated_files_per_annotator

# Define the path for storing the data
DATA_DIR = os.path.join(os.path.dirname(__file__), 'data')
STATS_FILE = os.path.join(DATA_DIR, 'battle_stats.csv')
LAST_UPDATE_FILE = os.path.join(DATA_DIR, 'last_update.txt')

# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)

def save_stats(df, current_time):
    """Save statistics and last update time to files"""
    df.to_csv(STATS_FILE, index=False)
    with open(LAST_UPDATE_FILE, 'w') as f:
        f.write(current_time)

def load_stats():
    """Load statistics and last update time from files"""
    try:
        df = pd.read_csv(STATS_FILE)
        with open(LAST_UPDATE_FILE, 'r') as f:
            last_update = f.read().strip()
        return df, last_update
    except (FileNotFoundError, pd.errors.EmptyDataError):
        return pd.DataFrame(columns=['Annotator', 'Total Count', 'Unique Count', 'Unique %']), ""

def update_stats():
    """Get the latest battle statistics with both total and deduplicated counts"""
    try:
        # Initialize RemoteLogReader
        reader = RemoteLogReader()
        
        # Get total annotator counts
        total_counts = count_files_per_annotator(reader)
        
        # Get deduplicated annotator counts
        unique_counts = count_deduplicated_files_per_annotator(reader)
        
        # Combine the data into a single DataFrame
        data = []
        all_annotators = set(total_counts.keys()) | set(unique_counts.keys())
        
        # Track totals for summary row
        total_sum = 0
        unique_sum = 0
        
        for annotator in all_annotators:
            total = total_counts.get(annotator, 0)
            unique = unique_counts.get(annotator, 0)
            # Calculate percentage of unique prompts
            percentage = round((unique / total * 100) if total > 0 else 0, 1)
            
            # Add to totals
            total_sum += total
            unique_sum += unique
            
            data.append({
                'Annotator': annotator,
                'Total Count': total,
                'Unique Count': unique,
                'Unique %': f"{percentage}%"
            })
        
        # Add summary row
        overall_percentage = round((unique_sum / total_sum * 100) if total_sum > 0 else 0, 1)
        data.append({
            'Annotator': 'TOTAL',
            'Total Count': total_sum,
            'Unique Count': unique_sum,
            'Unique %': f"{overall_percentage}%"
        })
        
        # Convert to DataFrame and sort by total count, keeping TOTAL at the bottom
        df = pd.DataFrame(data)
        # Move TOTAL row to the end
        df = pd.concat([
            df[df['Annotator'] != 'TOTAL'].sort_values('Total Count', ascending=False),
            df[df['Annotator'] == 'TOTAL']
        ]).reset_index(drop=True)
        
        # Get current time
        current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        # Save the updated stats
        save_stats(df, current_time)
        
        return df, current_time
    except Exception as e:
        print(f"Error updating stats: {e}")
        return pd.DataFrame(columns=['Annotator', 'Total Count', 'Unique Count', 'Unique %']), ""

def auto_update(state):
    """Background task to update stats every hour"""
    while state['running']:
        state['stats'], state['last_update'] = update_stats()
        time.sleep(3600)  # Sleep for 1 hour

def create_ui():
    state = {'running': True}
    
    # Try to load existing stats first
    state['stats'], state['last_update'] = load_stats()
    
    # If no existing stats or they're empty, update them
    if state['stats'].empty:
        state['stats'], state['last_update'] = update_stats()
    
    # Start background update thread
    update_thread = threading.Thread(target=auto_update, args=(state,))
    update_thread.daemon = True
    update_thread.start()
    
    def get_current_stats():
        return state['stats']
    
    def get_last_update():
        return state['last_update']
    
    def manual_refresh():
        state['stats'], state['last_update'] = update_stats()
        return state['stats'], state['last_update']
    
    with gr.Blocks(title="Battle Count Statistics") as app:
        gr.Markdown("# Battle Count Statistics")
        gr.Markdown("Displays the count of battles per annotator. 'Total Count' shows all valid battles, while 'Unique Count' shows deduplicated battles based on the first user prompt. Only conversations that pass the vote conditions are counted, and example prompts are excluded from the unique count.")
        
        with gr.Row():
            last_update = gr.Textbox(
                value=get_last_update,
                label="Last Updated",
                interactive=False
            )
        
        with gr.Row():
            output = gr.DataFrame(
                value=get_current_stats,
                interactive=False,
                wrap=True,
                column_widths=["40%", "20%", "20%", "20%"],
                height=600
            )
        
        refresh_btn = gr.Button("Refresh Now")
        refresh_btn.click(fn=manual_refresh, outputs=[output, last_update])
    
    return app

if __name__ == "__main__":
    app = create_ui()
    app.launch()