Spaces:
Sleeping
Sleeping
from keras import backend as K | |
def precision(y_true, y_pred): | |
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) | |
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) | |
_precision = true_positives / (predicted_positives + K.epsilon()) | |
return _precision | |
def recall(y_true, y_pred): | |
"""Compute recall metric""" | |
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) | |
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) | |
return true_positives / (possible_positives + K.epsilon()) | |
def f1_score(y_true, y_pred): | |
"""Compute f1-score metric""" | |
_precision = precision(y_true, y_pred) | |
_recall = recall(y_true, y_pred) | |
f1_score = 2 * ((_precision * _recall) / (_precision + _recall + K.epsilon())) | |
return f1_score |