import mimetypes import os import re import shutil import threading from typing import Optional import gradio as gr from dotenv import load_dotenv from huggingface_hub import login from smolagents import ( CodeAgent, HfApiModel, ) from smolagents.agent_types import AgentText, AgentImage, AgentAudio from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types from scripts.visual_qa import visualizer AUTHORIZED_IMPORTS = [ "requests", "zipfile", "os", "pandas", "numpy", "sympy", "json", "bs4", "pubchempy", "xml", "yahoo_finance", "Bio", "sklearn", "scipy", "pydub", "io", "PIL", "chess", "PyPDF2", "pptx", "torch", "datetime", "fractions", "csv", ] load_dotenv(override=True) login(os.getenv("HF_TOKEN")) append_answer_lock = threading.Lock() custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} model = HfApiModel( custom_role_conversions=custom_role_conversions, ) # Agent creation in a factory function def create_agent(): """Creates a fresh agent instance for each session""" return CodeAgent( model=model, tools=[visualizer], max_steps=10, verbosity_level=1, additional_authorized_imports=AUTHORIZED_IMPORTS, planning_interval=4, ) def stream_to_gradio( agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None, ): """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): for message in pull_messages_from_step( step_log, ): yield message final_answer = step_log # Last log is the run's final_answer final_answer = handle_agent_output_types(final_answer) if isinstance(final_answer, AgentText): yield gr.ChatMessage( role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}\n", ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, ) else: yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") class GradioUI: """A one-line interface to launch your agent in Gradio""" def __init__(self, file_upload_folder: str | None = None): self.file_upload_folder = file_upload_folder if self.file_upload_folder is not None: if not os.path.exists(file_upload_folder): os.mkdir(file_upload_folder) def interact_with_agent(self, prompt, messages, session_state): # Get or create session-specific agent if 'agent' not in session_state: session_state['agent'] = create_agent() # Adding monitoring try: # log the existence of agent memory has_memory = hasattr(session_state['agent'], 'memory') print(f"Agent has memory: {has_memory}") if has_memory: print(f"Memory type: {type(session_state['agent'].memory)}") messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False): messages.append(msg) yield messages yield messages except Exception as e: print(f"Error in interaction: {str(e)}") raise def upload_file( self, file, file_uploads_log, allowed_file_types=[ "application/pdf", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "text/plain", ], ): """ Handle file uploads, default allowed types are .pdf, .docx, and .txt """ if file is None: return gr.Textbox("No file uploaded", visible=True), file_uploads_log try: mime_type, _ = mimetypes.guess_type(file.name) except Exception as e: return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log if mime_type not in allowed_file_types: return gr.Textbox("File type disallowed", visible=True), file_uploads_log # Sanitize file name original_name = os.path.basename(file.name) sanitized_name = re.sub( r"[^\w\-.]", "_", original_name ) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores type_to_ext = {} for ext, t in mimetypes.types_map.items(): if t not in type_to_ext: type_to_ext[t] = ext # Ensure the extension correlates to the mime type sanitized_name = sanitized_name.split(".")[:-1] sanitized_name.append("" + type_to_ext[mime_type]) sanitized_name = "".join(sanitized_name) # Save the uploaded file to the specified folder file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) shutil.copy(file.name, file_path) return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] def log_user_message(self, text_input, file_uploads_log): return ( text_input + ( f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" if len(file_uploads_log) > 0 else "" ), gr.Textbox(value="", interactive=False, placeholder="Please wait while Steps are getting populated"), gr.Button(interactive=False) ) def detect_device(self, request: gr.Request): # Check whether the user device is a mobile or a computer if not request: return "Unknown device" # Method 1: Check sec-ch-ua-mobile header is_mobile_header = request.headers.get('sec-ch-ua-mobile') if is_mobile_header: return "Mobile" if '?1' in is_mobile_header else "Desktop" # Method 2: Check user-agent string user_agent = request.headers.get('user-agent', '').lower() mobile_keywords = ['android', 'iphone', 'ipad', 'mobile', 'phone'] if any(keyword in user_agent for keyword in mobile_keywords): return "Mobile" # Method 3: Check platform platform = request.headers.get('sec-ch-ua-platform', '').lower() if platform: if platform in ['"android"', '"ios"']: return "Mobile" elif platform in ['"windows"', '"macos"', '"linux"']: return "Desktop" # Default case if no clear indicators return "Desktop" def launch(self, **kwargs): with gr.Blocks(theme="ocean", fill_height=True) as demo: # Different layouts for mobile and computer devices @gr.render() def layout(request: gr.Request): device = self.detect_device(request) print(f"device - {device}") # Render layout with sidebar if device == "Desktop": with gr.Blocks(fill_height=True, ) as sidebar_demo: with gr.Sidebar(): gr.Markdown("""# Cata Deep Research OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. You can try a simplified version here.

""") with gr.Group(): gr.Markdown("**Your request**", container=True) text_input = gr.Textbox(lines=3, label="Your request", container=False, placeholder="Enter your prompt here and press Shift+Enter or press the button") launch_research_btn = gr.Button("Run", variant="primary") # If an upload folder is provided, enable the upload feature if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) # gr.HTML("

Powered by:

") # with gr.Row(): # gr.HTML("""
# logo # huggingface/smolagents #
""") # Add session state to store session-specific data session_state = gr.State({}) # Initialize empty state for each session stored_messages = gr.State([]) file_uploads_log = gr.State([]) chatbot = gr.Chatbot( label="Cata-Deep-Research", type="messages", resizeable=False, scale=1, elem_id="my-chatbot" ) text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda: ( gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) launch_research_btn.click( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda: ( gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) # Render simple layout else: with gr.Blocks(fill_height=True, ) as simple_demo: gr.Markdown("""# Cata Deep Research _Built with [smolagents](https://github.com/huggingface/smolagents)_ OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)👇""") # Add session state to store session-specific data session_state = gr.State({}) # Initialize empty state for each session stored_messages = gr.State([]) file_uploads_log = gr.State([]) chatbot = gr.Chatbot( label="Cata-Deep-Research", type="messages", resizeable=True, scale=1, ) # If an upload folder is provided, enable the upload feature if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) text_input = gr.Textbox(lines=1, label="Your request", placeholder="Enter your prompt here and press the button") launch_research_btn = gr.Button("Run", variant="primary", ) text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda: ( gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) launch_research_btn.click( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda: ( gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) demo.launch(debug=True, **kwargs) GradioUI().launch()