Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,74 +11,111 @@ from streamlit_lottie import st_lottie
|
|
11 |
|
12 |
|
13 |
####################### Music Generation Functions #######################
|
14 |
-
def generate(seq_len,
|
15 |
""" Generate a piano midi file """
|
|
|
16 |
with open('final_notes', 'rb') as filepath:
|
17 |
notes = pickle.load(filepath)
|
18 |
|
|
|
19 |
pitchnames = sorted(set(item for item in notes))
|
20 |
n_vocab = len(set(notes))
|
21 |
|
22 |
-
network_input, normalized_input = prepare_sequences(notes, pitchnames, n_vocab, seq_length=seq_len)
|
23 |
model = create_network(normalized_input, n_vocab)
|
24 |
prediction_output = generate_notes(model, network_input, pitchnames, n_vocab, x)
|
25 |
create_midi(prediction_output)
|
26 |
|
27 |
-
|
|
|
|
|
|
|
28 |
note_to_int = dict((note, number) for number, note in enumerate(pitchnames))
|
|
|
|
|
29 |
network_input = []
|
30 |
normalized_input = []
|
31 |
output = []
|
32 |
-
for i in range(0, len(notes) -
|
33 |
-
sequence_in = notes[i:i +
|
34 |
sequence_out = notes[i + sequence_length]
|
35 |
network_input.append([note_to_int[char] for char in sequence_in])
|
36 |
output.append(note_to_int[sequence_out])
|
37 |
|
38 |
n_patterns = len(network_input)
|
39 |
-
|
|
|
|
|
|
|
40 |
normalized_input = normalized_input / float(n_vocab)
|
41 |
|
42 |
return (network_input, normalized_input)
|
43 |
|
44 |
-
|
45 |
def create_network(network_input, n_vocab):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
model
|
50 |
-
model.add(
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
model.load_weights('best2.h5')
|
|
|
58 |
return model
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
|
|
|
63 |
pattern = network_input[start]
|
64 |
prediction_output = []
|
65 |
|
|
|
66 |
for note_index in range(x):
|
67 |
-
prediction_input =
|
68 |
prediction_input = prediction_input / float(n_vocab)
|
|
|
69 |
prediction = model.predict(prediction_input, verbose=0)
|
70 |
-
|
|
|
71 |
result = int_to_note[index]
|
72 |
prediction_output.append(result)
|
|
|
73 |
pattern.append(index)
|
74 |
pattern = pattern[1:len(pattern)]
|
75 |
|
76 |
return prediction_output
|
77 |
|
|
|
78 |
def create_midi(prediction_output):
|
|
|
79 |
offset = 0
|
80 |
output_notes = []
|
|
|
|
|
81 |
for pattern in prediction_output:
|
|
|
82 |
if ('.' in pattern) or pattern.isdigit():
|
83 |
notes_in_chord = pattern.split('.')
|
84 |
notes = []
|
@@ -89,21 +126,32 @@ def create_midi(prediction_output):
|
|
89 |
new_chord = chord.Chord(notes)
|
90 |
new_chord.offset = offset
|
91 |
output_notes.append(new_chord)
|
|
|
|
|
92 |
elif pattern == 'r':
|
93 |
new_note = note.Rest(pattern)
|
94 |
new_note.offset = offset
|
95 |
new_note.storedInstrument = instrument.Piano()
|
96 |
output_notes.append(new_note)
|
|
|
|
|
97 |
else:
|
98 |
new_note = note.Note(pattern)
|
99 |
new_note.offset = offset
|
100 |
new_note.storedInstrument = instrument.Piano()
|
101 |
output_notes.append(new_note)
|
|
|
|
|
102 |
offset += 0.5
|
103 |
|
104 |
midi_stream = stream.Stream(output_notes)
|
|
|
105 |
midi_stream.write('midi', fp='test_output2.mid')
|
106 |
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Set page config
|
109 |
st.set_page_config(page_title="Music Generation", page_icon=":tada:", layout="wide")
|
|
|
11 |
|
12 |
|
13 |
####################### Music Generation Functions #######################
|
14 |
+
def generate(seq_len,x):
|
15 |
""" Generate a piano midi file """
|
16 |
+
#load the notes used to train the model
|
17 |
with open('final_notes', 'rb') as filepath:
|
18 |
notes = pickle.load(filepath)
|
19 |
|
20 |
+
# Get all pitch names
|
21 |
pitchnames = sorted(set(item for item in notes))
|
22 |
n_vocab = len(set(notes))
|
23 |
|
24 |
+
network_input, normalized_input = prepare_sequences(notes, pitchnames, n_vocab , seq_length = seq_len)
|
25 |
model = create_network(normalized_input, n_vocab)
|
26 |
prediction_output = generate_notes(model, network_input, pitchnames, n_vocab, x)
|
27 |
create_midi(prediction_output)
|
28 |
|
29 |
+
|
30 |
+
def prepare_sequences(notes, pitchnames, n_vocab , seq_length):
|
31 |
+
""" Prepare the sequences used by the Neural Network """
|
32 |
+
# map between notes and integers and back
|
33 |
note_to_int = dict((note, number) for number, note in enumerate(pitchnames))
|
34 |
+
|
35 |
+
sequence_length = seq_length
|
36 |
network_input = []
|
37 |
normalized_input = []
|
38 |
output = []
|
39 |
+
for i in range(0, len(notes) - sequence_length, 1):
|
40 |
+
sequence_in = notes[i:i + sequence_length]
|
41 |
sequence_out = notes[i + sequence_length]
|
42 |
network_input.append([note_to_int[char] for char in sequence_in])
|
43 |
output.append(note_to_int[sequence_out])
|
44 |
|
45 |
n_patterns = len(network_input)
|
46 |
+
|
47 |
+
# reshape the input into a format compatible with LSTM layers
|
48 |
+
normalized_input = numpy.reshape(network_input, (n_patterns, sequence_length, 1))
|
49 |
+
# normalize input
|
50 |
normalized_input = normalized_input / float(n_vocab)
|
51 |
|
52 |
return (network_input, normalized_input)
|
53 |
|
|
|
54 |
def create_network(network_input, n_vocab):
|
55 |
+
""" create the structure of the neural network """
|
56 |
+
adam = tf.keras.optimizers.Adam(0.001)
|
57 |
+
|
58 |
+
model = Sequential()
|
59 |
+
model.add(LSTM(
|
60 |
+
512,
|
61 |
+
input_shape=(network_input.shape[1], network_input.shape[2]),
|
62 |
+
recurrent_dropout=0.3,
|
63 |
+
return_sequences=True
|
64 |
+
))
|
65 |
+
model.add(LSTM(512, return_sequences=True, recurrent_dropout=0.3,))
|
66 |
+
model.add(LSTM(256))
|
67 |
+
model.add(BatchNorm())
|
68 |
+
model.add(Dropout(0.2))
|
69 |
+
model.add(Dense(256))
|
70 |
+
model.add(Activation('relu'))
|
71 |
+
model.add(BatchNorm())
|
72 |
+
model.add(Dropout(0.2))
|
73 |
+
model.add(Dense(n_vocab))
|
74 |
+
model.add(Activation('softmax'))
|
75 |
+
# 'rmsprop'
|
76 |
+
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
|
77 |
+
|
78 |
+
# Load the weights to each node
|
79 |
model.load_weights('best2.h5')
|
80 |
+
|
81 |
return model
|
82 |
|
83 |
+
|
84 |
+
def generate_notes(model, network_input, pitchnames, n_vocab , x):
|
85 |
+
""" Generate notes from the neural network based on a sequence of notes """
|
86 |
+
# pick a random sequence from the input as a starting point for the prediction
|
87 |
+
start = numpy.random.randint(0, len(network_input)-1)
|
88 |
+
|
89 |
int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
|
90 |
+
|
91 |
pattern = network_input[start]
|
92 |
prediction_output = []
|
93 |
|
94 |
+
# generate x notes (x entered by user)
|
95 |
for note_index in range(x):
|
96 |
+
prediction_input = numpy.reshape(pattern, (1, len(pattern), 1))
|
97 |
prediction_input = prediction_input / float(n_vocab)
|
98 |
+
|
99 |
prediction = model.predict(prediction_input, verbose=0)
|
100 |
+
|
101 |
+
index = numpy.argmax(prediction)
|
102 |
result = int_to_note[index]
|
103 |
prediction_output.append(result)
|
104 |
+
|
105 |
pattern.append(index)
|
106 |
pattern = pattern[1:len(pattern)]
|
107 |
|
108 |
return prediction_output
|
109 |
|
110 |
+
|
111 |
def create_midi(prediction_output):
|
112 |
+
""" convert the output from the prediction to notes and create a midi file from the notes """
|
113 |
offset = 0
|
114 |
output_notes = []
|
115 |
+
|
116 |
+
# create note and chord objects based on the values generated by the model
|
117 |
for pattern in prediction_output:
|
118 |
+
# pattern is a chord
|
119 |
if ('.' in pattern) or pattern.isdigit():
|
120 |
notes_in_chord = pattern.split('.')
|
121 |
notes = []
|
|
|
126 |
new_chord = chord.Chord(notes)
|
127 |
new_chord.offset = offset
|
128 |
output_notes.append(new_chord)
|
129 |
+
|
130 |
+
# pattern is a rest
|
131 |
elif pattern == 'r':
|
132 |
new_note = note.Rest(pattern)
|
133 |
new_note.offset = offset
|
134 |
new_note.storedInstrument = instrument.Piano()
|
135 |
output_notes.append(new_note)
|
136 |
+
|
137 |
+
# pattern is a note
|
138 |
else:
|
139 |
new_note = note.Note(pattern)
|
140 |
new_note.offset = offset
|
141 |
new_note.storedInstrument = instrument.Piano()
|
142 |
output_notes.append(new_note)
|
143 |
+
|
144 |
+
# increase offset each iteration so that notes do not stack
|
145 |
offset += 0.5
|
146 |
|
147 |
midi_stream = stream.Stream(output_notes)
|
148 |
+
|
149 |
midi_stream.write('midi', fp='test_output2.mid')
|
150 |
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
|
156 |
# Set page config
|
157 |
st.set_page_config(page_title="Music Generation", page_icon=":tada:", layout="wide")
|