File size: 19,879 Bytes
5a1c96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

import streamlit as st
import requests
import numpy as np
from streamlit_lottie import st_lottie
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
import requests
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
import bs4
from urllib.request import urlopen
import time
import re
import time
import matplotlib.pyplot as plt 
import seaborn as sns 
import matplotlib as mpl
import plotly 
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
from plotly.offline import iplot
from plotly.subplots import make_subplots
import plotly.figure_factory as ff
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

#Settings for using the driver without a UI
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')

options.add_argument("start-maximized")
options.add_argument("disable-infobars")
options.add_argument("--disable-extensions")
driver = webdriver.Chrome('chromedriver',options=options)


# wuzzuf function
def Wuzzuf_scrapping(job_type , job_num):
    job1 = job_type.split(" ")[0]
    job2 = job_type.split(" ")[1]
    link1 = 'https://wuzzuf.net/search/jobs/?a=navbl&q='+job1+'%20'+job1
    title = []
    location = []
    country = []
    job_description = []
    Job_Requirements =[]
    company_name = []
    links = []
    Jop_type = []
    Career_Level = []
    company_logo = []
    Job_Categories = []
    Skills_And_Tools = []
    Experience_Needed =[]
    post_time = []
    Title = []
    pages_num = np.ceil(job_num/15)


    for i in range(int(pages_num) ):
      link_new = link1 +'&start='+str(i)
      data  = requests.get(link_new)
      soup  = BeautifulSoup(data.content)
      Title = soup.find_all('h2' , {'class': 'css-m604qf'})

  # to get the info about jobs

      for x in range(0,len(Title)):
        t = re.split('\(|\-',Title[x].find('a').text)
        title.append(t[0].strip())
        loc = re.split(',' , soup.find_all('span' , {'class': 'css-5wys0k'})[x].text)
        r = ""
        for i in range(len(loc[:-1])):
          r= r+ ', ' +loc[:-1][i].strip()
        location.append(r.replace(',', '', 1).strip())
        country.append(loc[-1].strip())
        links.append('https://wuzzuf.net' + Title[x].find('a').attrs['href'])
        m = " ".join(re.findall("[a-zA-Z\d+]+", (soup.find_all('div' , {'class': 'css-d7j1kk'})[x].find('a').text)))
        company_name.append(m)
        c = soup.find_all('div' ,{'class':'css-1lh32fc'})[x].find_all('span')
        if len(c) ==1:
          Jop_type.append(c[0].text)
        else:
          n =[]
          for i in range(len(c)):
            n.append(c[i].text)
          Jop_type.append(n)
        n =soup.find_all('div' ,{'class':'css-y4udm8'})[x].find_all('div')[1].find_all(['a','span'])
        Career_Level.append(n[0].text)
        n =soup.find_all('div' ,{'class':'css-y4udm8'})[x].find_all('div')[1].find_all(['a','span'])

        yy = n[1].text.replace('·',' ').strip()
        yy = re.findall('[0-9-+]*',yy)
        y1 =""
        for i in range(len(yy)):
        
          if any(yy[i]):
            y1 = y1+yy[i]
        if y1 != "":
          Experience_Needed.append(y1)
        else:
          Experience_Needed.append("Not Specified")
        time = (soup.find_all('div' ,{'class':'css-d7j1kk'}))[x].find('div')
        post_time.append(time.text)
        
  # to get the logo of the company
      
        data1  = requests.get(links[x])
        soup1 = BeautifulSoup(data1.content)
        company_logo.append(soup1.find_all('meta',{'property':"og:image"})[0]['content'])
        #time.sleep(4)


  # get Job_Categories , Skills_And_Tools , job_description , and job_requirements from urls
        driver = webdriver.Chrome('chromedriver',options=options)
        #driver.implicitly_wait(10)
        driver.get(links[x])
        Job_Categories.append(driver.find_element(By.XPATH ,'//*[@id="app"]/div/main/section[2]/div[5]').text.split("\n")[1:])
        Skills_And_Tools.append(driver.find_element(By.XPATH ,'//*[@id="app"]/div/main/section[2]/div[6]').text.split("\n")[1:])
        job_description.append(driver.find_element(By.XPATH ,'//*[@id="app"]/div/main/section[3]').text.split("\n")[1:])
        all =driver.find_elements(By.XPATH ,'//*[@id="app"]/div/main/section[4]/div')
        dict_other = {}
    
        new = all[0].text.split("\n\n")

        if len(new)!=1 :
          for i in range(len(new)):
            result =[]
            for k in (new[i].split('\n')[1:]):  
              result.append(k.replace("\u202f"," "))
              dict_other[new[i].split('\n')[0]] = result

            #result = re.sub('[\W_]+', '', ini_string)

          Job_Requirements.append(dict_other)

        else:
          nn = new[0].replace("\u202f"," ")
          Job_Requirements.append(nn.split('\n'))


  #  create data frame to combine all together

    df = pd.DataFrame({'Title' : title , 'Location' : location ,'country':country,'URLs':links ,'Company_Name' : company_name,'Career_Level':Career_Level,'post_time':post_time,'Experience_Needed':Experience_Needed,'Company_Logo':company_logo,"Job_Categories":Job_Categories , "Skills_And_Tools":Skills_And_Tools , "job_description":job_description,"Job_Requirements":Job_Requirements})
    
    df[:job_num].to_excel('WUZZUF_scrapping.xlsx',index=False,encoding='utf-8')
    return df[:job_num]


# linkedin function


def LINKEDIN_Scrapping(job_search , num_jobs):
  job1 = job_search.split(" ")[0]
  job2 = job_search.split(" ")[1]

  link1 = 'https://www.linkedin.com/jobs/search?keywords='+job1 +'%20' +job2 +'&location=&geoId=&trk=public_jobs_jobs-search-bar_search-submit&position=1&pageNum=0'
  
  # FIRST get main informations about jobs

  title = []
  location = []
  country = []
  company_name = []
  post_time = []
  links =[]
  # get the specific numbers of jobs
  l1 = ""
  ll =""
  driver = webdriver.Chrome('chromedriver',options=options)
  driver.get(link1)
  SCROLL_PAUSE_TIME = 0.5
  while True :
    l1 = driver.find_elements(By.XPATH,'//*[@id="main-content"]/section[2]/ul/li[*]/div')
    ll= driver.find_elements(By.XPATH ,'//*[@id="main-content"]/section[2]/ul/li[*]/div/a') 

    if len(l1) >= num_jobs:
      break
    time.sleep(3)
    # Get scroll height
    last_height = driver.execute_script("return document.body.scrollHeight")
    while True:
        
        # Scroll down to bottom
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")

        # Wait to load page
        time.sleep(SCROLL_PAUSE_TIME)

        # Calculate new scroll height and compare with last scroll height
        new_height = driver.execute_script("return document.body.scrollHeight")
        if new_height == last_height:
            break
        last_height = new_height
        
    options.add_argument("window-size=1200x600")
    WebDriverWait(driver, 15).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="main-content"]/section[2]/button'))).click()
    print(len(l1))
    time.sleep(2)
    


  l2 = l1[:num_jobs]

  for info in l2:   
    info_tot = info.text.split("\n")
    if len(info_tot)==5:
      title.append(info_tot[1])
      location.append(info_tot[3])
      company_name.append(info_tot[2])
      post_time.append(info_tot[4])
    else:
      title.append(info_tot[1])
      location.append(info_tot[3])
      company_name.append(info_tot[2])
      post_time.append(info_tot[5])

  # get links for jobs
  l3 = ll[:num_jobs]
  for i in l3:
    links.append(i.get_attribute('href'))
  
  df_ml = pd.DataFrame({'Title' : title , 'Location' : location ,'URLs':links ,'Company_Name' : company_name ,'post_time':post_time})




    # GET DESCRIPTION AND LOGO 
  def all_description_LOGO(urls):
    description =[]
    LOGO =[]
    for link in urls:         
      driver = webdriver.Chrome('chromedriver',options=options)
      driver.get(link)
      options.add_argument("window-size=1200x600")
      WebDriverWait(driver, 15).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="main-content"]/section[1]/div/div[1]/section[1]/div/div/section/button[1]'))).click()
      qqq= 4+444*58/7+65
      K = driver.find_element(By.XPATH,'//*[@id="main-content"]/section[1]/div/section[2]/div/a/img')
      LOGO.append(K.get_attribute('src'))
      time.sleep(3)
      t = driver.find_element(By.XPATH ,'//*[@id="main-content"]/section[1]/div/div[1]/section[1]/div/div/section/div')
      t_reverse=t.text[::-1]

      if t_reverse[:9] =="erom wohs":
        l = len(t.text)
        strings=t.text[:l-9].split("\n")
        strings[:] = [x for x in strings if x]
        description.append(strings)
      else:
        strings=t.text.split("\n")
        strings[:] = [x for x in strings if x]
        description.append(strings)
    df_ml = pd.DataFrame({'all_about_job' : description ,'company_logo':LOGO})

    return df_ml

  # apply desc. and logo function
  E = all_description_LOGO(links)

  # other info function
  def other(urls):
    frames =[]
    for url in urls:
      data1 = requests.get(url)
      soup1 = BeautifulSoup(data1.content)
      j =  soup1.find('ul' , {'class': 'description__job-criteria-list'})
      time.sleep(4)
      jj=j.find_all('h3')
      dic ={}
      for i in range(len(jj)):
        dic[jj[i].text.replace('\n',' ').strip()] = j.find_all('span')[i].text.replace('\n',' ').strip()
      output = pd.DataFrame()
      output = output.append(dic, ignore_index=True) 
      frames.append(output)
    result = pd.concat(frames)
    return result

  # apply Other function
  df = other(links)
  df.fillna('Not_Found',inplace= True)
  df.reset_index(inplace=True, drop=True)
 
 # combine all together
  result = pd.concat([df_ml,E, df ], axis=1)

  return result


##################### map_bubble #####################

#### function to show map for loaction of the job



def map_bubble(df):
  
  import requests
  import urllib.parse
  g =[]
  for i  in range(len(df.Location)):

    if  df.Location.loc[i].split(","):
      g.append(df.Location.loc[i].split(",")[0])
    else:
      g.append(df.Location.loc[i])
  df['new_loc']=g 
  if 'country' in df.columns:
    df["full_location"] = df["new_loc"] + ", " +df["country"]
    dict_cities = dict(df.full_location.value_counts())
  else :
    dict_cities = dict(df.new_loc.value_counts())
  lat = []
  lon = []
  bubble_df = pd.DataFrame()
  add=[]
  val=[]
  try:
    for address in dict_cities.keys():
      url = 'https://nominatim.openstreetmap.org/search/' + urllib.parse.quote(address) +'?format=json'

      response = requests.get(url).json()
      lat.append(response[0]["lat"])
      lon.append(response[0]["lon"])
      add.append(address)
      val.append(dict_cities[address])
  except:
    pass

  bubble_df['address'] =add
  bubble_df['lat'] = lat
  bubble_df['lon'] = lon
  bubble_df['value'] = val


  # import the library
  import folium

  # Make an empty map
  m = folium.Map(location=[20,0], tiles="OpenStreetMap", zoom_start=2)
  # add marker one by one on the map
  for i in range(0,len(bubble_df)):
    folium.Circle(
        location=[bubble_df.iloc[i]['lat'], bubble_df.iloc[i]['lon']],

        popup=bubble_df.iloc[i][['address','value']].values,
        radius=float(bubble_df.iloc[i]['value'])*500,
        color='#69b3a2',
        fill=True,
        fill_color='#69b3a2'
    ).add_to(m)
  m
  # Show the map again
  return m


##########################





#########################
#### wuzzuf analysis
def wuzzuf_exp(df1):
  top10_job_title = df1['Title'].value_counts()[:10]
  fig1 = px.bar(y=top10_job_title.values, 
              x=top10_job_title.index, 
              color = top10_job_title.index,
              color_discrete_sequence=px.colors.sequential.deep,
              text=top10_job_title.values,
              title= 'Top 10 Job Titles',
              template= 'plotly_dark')
  fig1.update_layout(height=500,width=500, 
      xaxis_title="Job Titles",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  st.plotly_chart(fig1)

  type_grouped = df1['Career_Level'].value_counts()
  #e_type = ['Full-Time','Part-Time','Contract','Freelance']
  e_type =dict(df1['Career_Level'].value_counts()).keys()
  fig2 = px.bar(x = e_type, y = type_grouped.values, 
        color = type_grouped.index, 
        color_discrete_sequence=px.colors.sequential.dense,
        template = 'plotly_dark',
        text = type_grouped.values, title = 'Career Level Distribution')
  fig2.update_layout( height=500, width=500,
      xaxis_title="Career Level",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  fig2.update_traces(width=0.5)
  st.plotly_chart(fig2)
  residence = df1['Location'].value_counts()
  top10_employee_location = residence[:10]
  fig3 = px.bar(y=top10_employee_location.values, 
              x=top10_employee_location.index, 
              color = top10_employee_location.index,
              color_discrete_sequence=px.colors.sequential.deep,
              text=top10_employee_location.values,
              title= 'Top 10 Location of job',
              template= 'plotly_dark')
  fig3.update_layout(height=500,width=500,
      xaxis_title="Location of job",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  st.plotly_chart(fig3)
    
  type_grouped = df1['Experience_Needed'].value_counts()
  #e_type = ['Full-Time','Part-Time','Contract','Freelance']
  e_type =dict(df1['Experience_Needed'].value_counts()).keys()
  fig4 = px.bar(x = e_type, y = type_grouped.values, 
        color = type_grouped.index, 
        color_discrete_sequence=px.colors.sequential.dense,
        template = 'plotly_dark',
        text = type_grouped.values, title = ' Experience Level Distribution')
  fig4.update_layout(height=500,width=500,
      xaxis_title=" Experience Level (years)",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  fig4.update_traces(width=0.5)
  st.plotly_chart(fig4)
  return 



#########################
### linkedin analysis

def linkedin_exp(df1):
  top10_job_title = df1['Title'].value_counts()[:10]
  fig1 = px.bar(y=top10_job_title.values, 
              x=top10_job_title.index, 
              color = top10_job_title.index,
              color_discrete_sequence=px.colors.sequential.deep,
              text=top10_job_title.values,
              title= 'Top 10 Job Titles',
              template= 'plotly_dark')
  fig1.update_layout(height=500,width=500, 
      xaxis_title="Job Titles",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  st.plotly_chart(fig1)

  type_grouped = df1['Employment type'].value_counts()
  #e_type = ['Full-Time','Part-Time','Contract','Freelance']
  e_type =dict(df1['Employment type'].value_counts()).keys()
  fig2 = px.bar(x = e_type, y = type_grouped.values, 
        color = type_grouped.index, 
        color_discrete_sequence=px.colors.sequential.dense,
        template = 'plotly_dark',
        text = type_grouped.values, title = 'Employment type Distribution')
  fig2.update_layout( height=500, width=500,
      xaxis_title="Employment type",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  fig2.update_traces(width=0.5)
  st.plotly_chart(fig2)
  residence = df1['Location'].value_counts()
  top10_employee_location = residence[:10]
  fig3 = px.bar(y=top10_employee_location.values, 
              x=top10_employee_location.index, 
              color = top10_employee_location.index,
              color_discrete_sequence=px.colors.sequential.deep,
              text=top10_employee_location.values,
              title= 'Top 10 Location of job',
              template= 'plotly_dark')
  fig3.update_layout(height=500,width=500,
      xaxis_title="Location of job",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  st.plotly_chart(fig3)
    
  type_grouped = df1['Seniority level'].value_counts()
  #e_type = ['Full-Time','Part-Time','Contract','Freelance']
  e_type =dict(df1['Seniority level'].value_counts()).keys()
  fig4 = px.bar(x = e_type, y = type_grouped.values, 
        color = type_grouped.index, 
        color_discrete_sequence=px.colors.sequential.dense,
        template = 'plotly_dark',
        text = type_grouped.values, title = 'Seniority level Distribution')
  fig4.update_layout(height=500,width=500,
      xaxis_title="Seniority level",
      yaxis_title="count",
      font = dict(size=17,family="Franklin Gothic"))
  fig4.update_traces(width=0.5)
  st.plotly_chart(fig4)
  return 


########################

####################### stream lit app ################################

#site = ""
#job =""
#num_jobs = 0

st.set_page_config(page_title="My Web_Scrap Page", page_icon=":tada:", layout="wide")


# ---- HEADER SECTION ----
with st.container():
    left_column, right_column = st.columns(2)
    with left_column:
        st.subheader("Hi! I am Yassmen :wave:")
        st.title("An Electronics and Communcation Engineer")
        st.write(
            "In this app we will scrap jobs from LinkedIn and Wuzzuf websites, let's get it started :boom:"
        )
        st.write("[Reach me >](https://www.linkedin.com/in/yassmen-youssef-48439a166/)")
    with right_column:
        pass
       # st_lottie(lottie_coding, height=300, key="coding")



import streamlit as st
from streamlit_option_menu import option_menu

#with st.sidebar:
   # selected = option_menu("Main Menu", ["select website", 'search job','numbers of jobs'], icons=['linkedin', 'search','123'], menu_icon="cast", default_index=1)
    
webs =["Wuzzuf","Linkedin"]
jobs =["Machine Learning","AI Engineer","Data Analysis","Software Testing"]
nums = np.arange(1,1000)

#with st.sidebar:
  #if selected == "select website":
site = st.sidebar.selectbox("select one website", webs)
  #elif selected == "search job":
job = st.sidebar.selectbox("select one job", jobs)
  #elif selected == "numbers of jobs":
num_jobs = st.sidebar.selectbox("select num of jobs you want to scrap", nums)



import streamlit.components.v1 as components

import hydralit_components as hc
n2 = pd.DataFrame()

if st.sidebar.button('Start Scrapping'):
  if site =="Wuzzuf":

    with st.container():
        st.write("---")
        tab1, tab2 ,tab3= st.tabs([" Data", " Bubble Map","Data Exploration"])
        with tab1 :
          with hc.HyLoader('✨Now loading' ,hc.Loaders.standard_loaders,index=[3,0,5]):
            time.sleep(5)
            n1 = Wuzzuf_scrapping(job ,num_jobs )
            try:
              tab1.dataframe(n1)
            except:
              try:
                tab1.write(n1.astype(str).set_index(n1.index.astype(str)))  # Success
              except:
                tab1.table(n1)
        with tab2:
          map_bubble(n1)
        with tab3:
          #tab3.plotly_chart(wuzzuf_exp(n1))
          wuzzuf_exp(n1)


  if site =="Linkedin":
    with st.container():
        st.write("---")
        tab1, tab2 ,tab3= st.tabs([" Data", " Bubble Map","Data Exploration"])
        with tab1 :
          with hc.HyLoader('✨Now loading' ,hc.Loaders.standard_loaders,index=[3,0,5]):
            time.sleep(5)
            n1 = LINKEDIN_Scrapping(job ,num_jobs )
            try:
              tab1.dataframe(n1)
            except:
              try:
                tab1.write(n1.astype(str).set_index(n1.index.astype(str)))  # Success
              except:
                tab1.table(n1)
        with tab2:
          map_bubble(n1)
        with tab3:
          linkedin_exp(n1)  # WILL CHANGE