#Import part from transformers import pipeline import streamlit as st import torch # Use function for the implementation # function part # img2text def img2text(img): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(img)[0]["generated_text"] return text # text2story def text2story(text): generator = pipeline("text-generation", model="distilbert/distilgpt2") story_text = generator( text, min_length=150, # min_length, # of tokens at least larger than100 max_length=300, num_return_sequences=1, no_repeat_ngram_size=2, # prevent repetition early_stopping=False # prohibit early stopping )[0]["generated_text"] return story_text # text2audio def text2audio(story_text): tts_pipeline = pipeline("text-to-speech", model="facebook/mms-tts-eng") audio_data = tts_pipeline(story_text) # 直接返回字典 return audio_data # tts_pipeline = pipeline("text-to-speech", model="suno/bark-small") # audio_data = tts_pipeline(story_text) # audio_buffer = io.BytesIO() # wavfile.write(audio_buffer, rate=audio_data["sampling_rate"], data=audio_data["audio"]) # audio_buffer.seek(0) # return { # 'audio': audio_buffer.getvalue(), # 'sampling_rate': audio_data["sampling_rate"] # } # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # inputs = processor(text=story_text, return_tensors="pt") # with torch.no_grad(): # speech = model.generate(**inputs) # audio_data = speech.cpu().numpy().squeeze() # audio_buffer = io.BytesIO() # wavfile.write(audio_buffer, rate=16000, data=audio_data) # 16kHz 采样率 # audio_buffer.seek(0) # return {'audio': audio_buffer.getvalue(), 'sampling_rate': 16000} # program main part st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) #Stage 1: Image to Text st.text('Processing img2text...') scenario = img2text(uploaded_file.name) st.write(scenario) #Stage 2: Text to Story st.text('Generating a story...') story = text2story(scenario) st.write(story) #Stage 3: Story to Audio data st.text('Generating audio data...') audio_data =text2audio(story) # Play button if st.button("Play Audio"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate']) #st.audio("kids_playing_audio.wav")