Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,354 Bytes
85c524d 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 85c524d 5cecc58 85c524d 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 85c524d 49cfbf7 85c524d 49cfbf7 85c524d 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 85c524d bb65500 977fb98 bb65500 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 33cc87a 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 977fb98 49cfbf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True)
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
import docx
import PyPDF2
import spaces
def convert_to_txt(file):
doc_type = file.split(".")[-1].strip()
if doc_type in ["txt", "md", "py"]:
data = [file.read().decode("utf-8")]
elif doc_type in ["pdf"]:
pdf_reader = PyPDF2.PdfReader(file)
data = [
pdf_reader.pages[i].extract_text() for i in range(len(pdf_reader.pages))
]
elif doc_type in ["docx"]:
doc = docx.Document(file)
data = [p.text for p in doc.paragraphs]
else:
raise gr.Error(f"ERROR: unsupported document type: {doc_type}")
text = "\n\n".join(data)
return text
model_name = "THUDM/LongCite-glm4-9b"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device="cuda",
attn_implementation="flash_attention_2",
)
html_styles = """<style>
.reference {
color: blue;
text-decoration: underline;
}
.highlight {
background-color: yellow;
}
.label {
font-family: sans-serif;
font-size: 16px;
font-weight: bold;
}
.Bold {
font-weight: bold;
}
.statement {
background-color: lightgrey;
}
</style>\n"""
def process_text(text):
special_char = {
"&": "&",
"'": "'",
'"': """,
"<": "<",
">": ">",
"\n": "<br>",
}
for x, y in special_char.items():
text = text.replace(x, y)
return text
def convert_to_html(statements, clicked=-1):
html = html_styles + '<br><span class="label">Answer:</span><br>\n'
all_cite_html = []
clicked_cite_html = None
cite_num2idx = {}
idx = 0
for i, js in enumerate(statements):
statement, citations = process_text(js["statement"]), js["citation"]
if clicked == i:
html += f"""<span class="statement">{statement}</span>"""
else:
html += f"<span>{statement}</span>"
if citations:
cite_html = []
idxs = []
for c in citations:
idx += 1
idxs.append(str(idx))
cite = (
"[Sentence: {}-{}\t|\tChar: {}-{}]<br>\n<span {}>{}</span>".format(
c["start_sentence_idx"],
c["end_sentence_idx"],
c["start_char_idx"],
c["end_char_idx"],
'class="highlight"' if clicked == i else "",
process_text(c["cite"].strip()),
)
)
cite_html.append(
f"""<span><span class="Bold">Snippet [{idx}]:</span><br>{cite}</span>"""
)
all_cite_html.extend(cite_html)
cite_num = "[{}]".format(",".join(idxs))
cite_num2idx[cite_num] = i
cite_num_html = """ <span class="reference" style="color: blue" id={}>{}</span>""".format(
i, cite_num
)
html += cite_num_html
html += "\n"
if clicked == i:
clicked_cite_html = (
html_styles
+ """<br><span class="label">Citations of current statement:</span><br><div style="overflow-y: auto; padding: 20px; border: 0px dashed black; border-radius: 6px; background-color: #EFF2F6;">{}</div>""".format(
"<br><br>\n".join(cite_html)
)
)
all_cite_html = (
html_styles
+ """<br><span class="label">All citations:</span><br>\n<div style="overflow-y: auto; padding: 20px; border: 0px dashed black; border-radius: 6px; background-color: #EFF2F6;">{}</div>""".format(
"<br><br>\n".join(all_cite_html).replace(
'<span class="highlight">', "<span>"
)
if len(all_cite_html)
else "No citation in the answer"
)
)
return html, all_cite_html, clicked_cite_html, cite_num2idx
def render_context(file):
if hasattr(file, "name"):
context = convert_to_txt(file.name)
return gr.Textbox(context, visible=True)
else:
raise gr.Error(f"ERROR: no uploaded document")
@spaces.GPU(duration=120)
def infer(context, query):
return model.query_longcite(
context=context,
query=query,
tokenizer=tokenizer,
max_input_length=128000,
max_new_tokens=1024,
)
def run_llm(context, query):
if not context:
raise gr.Error("Error: no uploaded document")
if not query:
raise gr.Error("Error: no query")
result = infer(context=context, query=query)
all_statements = result["all_statements"]
answer_html, all_cite_html, clicked_cite_html, cite_num2idx_dict = convert_to_html(
all_statements
)
cite_nums = list(cite_num2idx_dict.keys())
return {
statements: gr.JSON(all_statements),
answer: gr.HTML(answer_html, visible=True),
all_citations: gr.HTML(all_cite_html, visible=True),
cite_num2idx: gr.JSON(cite_num2idx_dict),
citation_choices: gr.Radio(cite_nums, visible=len(cite_nums) > 0),
clicked_citations: gr.HTML(visible=False),
}
def chose_citation(statements, cite_num2idx, clicked_cite_num):
clicked = cite_num2idx[clicked_cite_num]
answer_html, _, clicked_cite_html, _ = convert_to_html(statements, clicked=clicked)
return {
answer: gr.HTML(answer_html, visible=True),
clicked_citations: gr.HTML(clicked_cite_html, visible=True),
}
with gr.Blocks() as demo:
gr.Markdown(
"""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
LongCite-glm4-9b Huggingface Space🤗
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/THUDM/LongCite-glm4-9b">🤗 Model Hub</a> |
<a href="https://github.com/THUDM/LongCite">🌐 Github</a> |
<a href="https://arxiv.org/abs/2409.02897">📜 arxiv </a>
</div>
<br>
<div style="text-align: center; font-size: 15px; font-weight: bold; margin-bottom: 20px; line-height: 1.5;">
If you plan to use it long-term, please consider deploying the model or forking this space yourself.
</div>
"""
)
with gr.Row():
with gr.Column(scale=4):
file = gr.File(
label="Upload a document (supported type: pdf, docx, txt, md, py)"
)
query = gr.Textbox(label="Question")
submit_btn = gr.Button("Submit")
with gr.Column(scale=4):
context = gr.Textbox(
label="Document content",
autoscroll=False,
placeholder="No uploaded document.",
max_lines=10,
visible=False,
)
file.upload(render_context, [file], [context])
with gr.Row():
with gr.Column(scale=4):
statements = gr.JSON(label="statements", visible=False)
answer = gr.HTML(label="Answer", visible=True)
cite_num2idx = gr.JSON(label="cite_num2idx", visible=False)
citation_choices = gr.Radio(
label="Chose citations for details", visible=False, interactive=True
)
with gr.Column(scale=4):
clicked_citations = gr.HTML(
label="Citations of the chosen statement", visible=False
)
all_citations = gr.HTML(label="All citations", visible=False)
submit_btn.click(
run_llm,
[context, query],
[
statements,
answer,
all_citations,
cite_num2idx,
citation_choices,
clicked_citations,
],
)
citation_choices.change(
chose_citation,
[statements, cite_num2idx, citation_choices],
[answer, clicked_citations],
)
demo.queue()
demo.launch()
|