from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from src.helper import load_pdf, text_split, download_hugging_face_embeddings
DATA_PATH = r'G:\Chatbot\data'
DB_FAISS_PATH = r'G:\Chatbot\data\vector'


'''extracted_data = load_pdf(r"G:\Chatbot\data")
text_chunks = text_split(extracted_data)
embeddings = download_hugging_face_embeddings()
# Initializing the Faiss
db = FAISS.from_documents(text_chunks, embeddings)
db.save_local(DB_FAISS_PATH)
# I change the above DB_FAISS_PATH
# db.save_local(r"G:\Chatbot\DB_FAISS_PATH")'''


# Load the data from the PDF file
def create_vector_db():
    extracted_data = load_pdf(DATA_PATH)
    text_chunks = text_split(extracted_data)
    embeddings = download_hugging_face_embeddings()
    db = FAISS.from_documents(text_chunks, embeddings)
    db.save_local(DB_FAISS_PATH)
    print("### db is created")


'''# Create vector database
def create_vector_db():
    loader = DirectoryLoader(DATA_PATH, 
                            glob='*.pdf', 
                            loader_cls=PyPDFLoader)

    documents = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, 
                                                    chunk_overlap=50)
    texts = text_splitter.split_documents(documents)

    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
                                        model_kwargs={'device': 'cuda'})

    db = FAISS.from_documents(texts, embeddings)
    db.save_local(DB_FAISS_PATH)

create_vector_db()  # Call the function directly in the cell'''