Upload 4 files
Browse files- .gitattributes +2 -0
- data/Medical_book.pdf +3 -0
- data/vector/index.faiss +3 -0
- data/vector/index.pkl +3 -0
- store_index.py +48 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/Medical_book.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/vector/index.faiss filter=lfs diff=lfs merge=lfs -text
|
data/Medical_book.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753cd53b7a3020bbd91f05629b0e3ddcfb6a114d7bbedb22c2298b66f5dd00cc
|
3 |
+
size 16127037
|
data/vector/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eefa9ec7a37afdb420c2071d7ad6152d242a556e8a8dcfa4a88716714afc4ca3
|
3 |
+
size 9001005
|
data/vector/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:746288fa8a336fe54359fd5ed7d43cc71fe78e463a389fc28f20e298dfc85082
|
3 |
+
size 3283602
|
store_index.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
import os
|
6 |
+
from src.helper import load_pdf, text_split, download_hugging_face_embeddings
|
7 |
+
DATA_PATH = r'G:\Chatbot\data'
|
8 |
+
DB_FAISS_PATH = r'G:\Chatbot\data\vector'
|
9 |
+
|
10 |
+
|
11 |
+
'''extracted_data = load_pdf(r"G:\Chatbot\data")
|
12 |
+
text_chunks = text_split(extracted_data)
|
13 |
+
embeddings = download_hugging_face_embeddings()
|
14 |
+
# Initializing the Faiss
|
15 |
+
db = FAISS.from_documents(text_chunks, embeddings)
|
16 |
+
db.save_local(DB_FAISS_PATH)
|
17 |
+
# I change the above DB_FAISS_PATH
|
18 |
+
# db.save_local(r"G:\Chatbot\DB_FAISS_PATH")'''
|
19 |
+
|
20 |
+
|
21 |
+
# Load the data from the PDF file
|
22 |
+
def create_vector_db():
|
23 |
+
extracted_data = load_pdf(DATA_PATH)
|
24 |
+
text_chunks = text_split(extracted_data)
|
25 |
+
embeddings = download_hugging_face_embeddings()
|
26 |
+
db = FAISS.from_documents(text_chunks, embeddings)
|
27 |
+
db.save_local(DB_FAISS_PATH)
|
28 |
+
print("### db is created")
|
29 |
+
|
30 |
+
|
31 |
+
'''# Create vector database
|
32 |
+
def create_vector_db():
|
33 |
+
loader = DirectoryLoader(DATA_PATH,
|
34 |
+
glob='*.pdf',
|
35 |
+
loader_cls=PyPDFLoader)
|
36 |
+
|
37 |
+
documents = loader.load()
|
38 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
39 |
+
chunk_overlap=50)
|
40 |
+
texts = text_splitter.split_documents(documents)
|
41 |
+
|
42 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
|
43 |
+
model_kwargs={'device': 'cuda'})
|
44 |
+
|
45 |
+
db = FAISS.from_documents(texts, embeddings)
|
46 |
+
db.save_local(DB_FAISS_PATH)
|
47 |
+
|
48 |
+
create_vector_db() # Call the function directly in the cell'''
|