Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,102 @@
|
|
1 |
-
from flask import Flask, render_template, jsonify, request
|
2 |
-
from src.helper import download_hugging_face_embeddings
|
3 |
-
|
4 |
-
from langchain_community.vectorstores import FAISS
|
5 |
-
|
6 |
-
from langchain.prompts import PromptTemplate
|
7 |
-
from langchain_groq import ChatGroq
|
8 |
-
# from langchain.llms import CTransformers
|
9 |
-
from langchain.chains import RetrievalQA
|
10 |
-
from langchain_core.prompts import ChatPromptTemplate
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
from src.prompt import *
|
13 |
-
import os
|
14 |
-
from store_index import create_vector_db
|
15 |
-
app = Flask(__name__)
|
16 |
-
|
17 |
-
# load_dotenv()
|
18 |
-
|
19 |
-
# PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
|
20 |
-
# PINECONE_API_ENV = os.environ.get('PINECONE_API_ENV')
|
21 |
-
|
22 |
-
|
23 |
-
# DATA_PATH = '/kaggle/input/book-pdf'
|
24 |
-
# DB_FAISS_PATH = r'G:\Chatbot\data\vector'
|
25 |
-
|
26 |
-
# Create vector database
|
27 |
-
create_vector_db()
|
28 |
-
print("###333")
|
29 |
-
# Call the function directly in the cell
|
30 |
-
|
31 |
-
'''#Initializing the Pinecone
|
32 |
-
pinecone.init(api_key=PINECONE_API_KEY,
|
33 |
-
environment=PINECONE_API_ENV)
|
34 |
-
|
35 |
-
index_name="medical-bot"'''
|
36 |
-
|
37 |
-
embeddings = download_hugging_face_embeddings()
|
38 |
-
# Load the FAISS vector database
|
39 |
-
|
40 |
-
# also i change here
|
41 |
-
# db = FAISS.load_local(DB_FAISS_PATH, embeddings)
|
42 |
-
DB_FAISS_PATH = r'
|
43 |
-
print("vector_base is loading from the folder")
|
44 |
-
db = FAISS.load_local(DB_FAISS_PATH, embeddings,
|
45 |
-
allow_dangerous_deserialization=True)
|
46 |
-
# Loading the index
|
47 |
-
# db = FAISS.load_local(r"G:\Chatbot\DB_FAISS_PATH",embeddings, allow_dangerous_deserialization=True)
|
48 |
-
|
49 |
-
|
50 |
-
# docsearch=Pinecone.from_existing_index(index_name, embeddings)
|
51 |
-
|
52 |
-
# Create a ChatPromptTemplate
|
53 |
-
prompt = ChatPromptTemplate.from_template(prompt_template)
|
54 |
-
|
55 |
-
chain_type_kwargs = {"prompt": prompt}
|
56 |
-
|
57 |
-
'''PROMPT = PromptTemplate(template=prompt_template,
|
58 |
-
input_variables=["context", "question"])
|
59 |
-
|
60 |
-
chain_type_kwargs = {"prompt": PROMPT}'''
|
61 |
-
|
62 |
-
'''llm = CTransformers(model=r"G:\Chatbot\model\llama-2-7b-chat.ggmlv3.q4_0.bin",
|
63 |
-
model_type="llama",
|
64 |
-
config={'max_new_tokens': 512,
|
65 |
-
'temperature': 0.8})'''
|
66 |
-
|
67 |
-
# Initialize the LLM
|
68 |
-
# llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
|
69 |
-
# groq_api_key = ('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')
|
70 |
-
# Load the GROQ and OpenAI API keys
|
71 |
-
groq_api_key = os.getenv('GROQ_API_KEY')
|
72 |
-
# os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
73 |
-
# Initialize the LLM
|
74 |
-
llm = ChatGroq(groq_api_key=groq_api_key,
|
75 |
-
model_name="Llama3-8b-8192")
|
76 |
-
|
77 |
-
|
78 |
-
qa = RetrievalQA.from_chain_type(
|
79 |
-
llm=llm,
|
80 |
-
chain_type="stuff",
|
81 |
-
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
82 |
-
return_source_documents=True,
|
83 |
-
chain_type_kwargs=chain_type_kwargs)
|
84 |
-
|
85 |
-
|
86 |
-
@app.route("/")
|
87 |
-
def index():
|
88 |
-
return render_template('chat.html')
|
89 |
-
|
90 |
-
|
91 |
-
@app.route("/get", methods=["GET", "POST"])
|
92 |
-
def chat():
|
93 |
-
msg = request.form["msg"]
|
94 |
-
input = msg
|
95 |
-
print(input)
|
96 |
-
result = qa({"query": input})
|
97 |
-
print("Response : ", result["result"])
|
98 |
-
return str(result["result"])
|
99 |
-
|
100 |
-
|
101 |
-
if __name__ == '__main__':
|
102 |
-
app.run(host="0.0.0.0", port=8080, debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, jsonify, request
|
2 |
+
from src.helper import download_hugging_face_embeddings
|
3 |
+
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
# from langchain.llms import CTransformers
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from src.prompt import *
|
13 |
+
import os
|
14 |
+
from store_index import create_vector_db
|
15 |
+
app = Flask(__name__)
|
16 |
+
|
17 |
+
# load_dotenv()
|
18 |
+
|
19 |
+
# PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
|
20 |
+
# PINECONE_API_ENV = os.environ.get('PINECONE_API_ENV')
|
21 |
+
|
22 |
+
|
23 |
+
# DATA_PATH = '/kaggle/input/book-pdf'
|
24 |
+
# DB_FAISS_PATH = r'G:\Chatbot\data\vector'
|
25 |
+
|
26 |
+
# Create vector database
|
27 |
+
#create_vector_db()
|
28 |
+
print("###333")
|
29 |
+
# Call the function directly in the cell
|
30 |
+
|
31 |
+
'''#Initializing the Pinecone
|
32 |
+
pinecone.init(api_key=PINECONE_API_KEY,
|
33 |
+
environment=PINECONE_API_ENV)
|
34 |
+
|
35 |
+
index_name="medical-bot"'''
|
36 |
+
|
37 |
+
embeddings = download_hugging_face_embeddings()
|
38 |
+
# Load the FAISS vector database
|
39 |
+
|
40 |
+
# also i change here
|
41 |
+
# db = FAISS.load_local(DB_FAISS_PATH, embeddings)
|
42 |
+
DB_FAISS_PATH = r'data\vector'
|
43 |
+
print("vector_base is loading from the folder")
|
44 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings,
|
45 |
+
allow_dangerous_deserialization=True)
|
46 |
+
# Loading the index
|
47 |
+
# db = FAISS.load_local(r"G:\Chatbot\DB_FAISS_PATH",embeddings, allow_dangerous_deserialization=True)
|
48 |
+
|
49 |
+
|
50 |
+
# docsearch=Pinecone.from_existing_index(index_name, embeddings)
|
51 |
+
|
52 |
+
# Create a ChatPromptTemplate
|
53 |
+
prompt = ChatPromptTemplate.from_template(prompt_template)
|
54 |
+
|
55 |
+
chain_type_kwargs = {"prompt": prompt}
|
56 |
+
|
57 |
+
'''PROMPT = PromptTemplate(template=prompt_template,
|
58 |
+
input_variables=["context", "question"])
|
59 |
+
|
60 |
+
chain_type_kwargs = {"prompt": PROMPT}'''
|
61 |
+
|
62 |
+
'''llm = CTransformers(model=r"G:\Chatbot\model\llama-2-7b-chat.ggmlv3.q4_0.bin",
|
63 |
+
model_type="llama",
|
64 |
+
config={'max_new_tokens': 512,
|
65 |
+
'temperature': 0.8})'''
|
66 |
+
|
67 |
+
# Initialize the LLM
|
68 |
+
# llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
|
69 |
+
# groq_api_key = ('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')
|
70 |
+
# Load the GROQ and OpenAI API keys
|
71 |
+
groq_api_key = os.getenv('GROQ_API_KEY')
|
72 |
+
# os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
73 |
+
# Initialize the LLM
|
74 |
+
llm = ChatGroq(groq_api_key=groq_api_key,
|
75 |
+
model_name="Llama3-8b-8192")
|
76 |
+
|
77 |
+
|
78 |
+
qa = RetrievalQA.from_chain_type(
|
79 |
+
llm=llm,
|
80 |
+
chain_type="stuff",
|
81 |
+
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
82 |
+
return_source_documents=True,
|
83 |
+
chain_type_kwargs=chain_type_kwargs)
|
84 |
+
|
85 |
+
|
86 |
+
@app.route("/")
|
87 |
+
def index():
|
88 |
+
return render_template('chat.html')
|
89 |
+
|
90 |
+
|
91 |
+
@app.route("/get", methods=["GET", "POST"])
|
92 |
+
def chat():
|
93 |
+
msg = request.form["msg"]
|
94 |
+
input = msg
|
95 |
+
print(input)
|
96 |
+
result = qa({"query": input})
|
97 |
+
print("Response : ", result["result"])
|
98 |
+
return str(result["result"])
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == '__main__':
|
102 |
+
app.run(host="0.0.0.0", port=8080, debug=True)
|