MegaTronX commited on
Commit
6f73069
·
verified ·
1 Parent(s): 968826d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -0
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from threading import Thread
3
+ from typing import Iterator
4
+
5
+ import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
+
10
+ MAX_MAX_NEW_TOKENS = 8096
11
+ DEFAULT_MAX_NEW_TOKENS = 1024
12
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
13
+
14
+ if torch.cuda.is_available() or os.getenv("ZERO_GPU_SUPPORT", False):
15
+ model_id = "MegaTronX/DragonAI-Python-SmolLM2-1.7B-Instruct"
16
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
17
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
18
+ else:
19
+ raise RuntimeError("No compatible GPU environment found for this model.")
20
+
21
+
22
+ @spaces.GPU
23
+ def generate(
24
+ message: str,
25
+ chat_history: list[tuple[str, str]],
26
+ system_prompt: str,
27
+ max_new_tokens: int = 1024,
28
+ temperature: float = 0,
29
+ ) -> Iterator[str]:
30
+ conversation = []
31
+ if system_prompt:
32
+ conversation.append({"role": "system", "content": system_prompt})
33
+ for user, assistant in chat_history:
34
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
35
+ conversation.append({"role": "user", "content": message})
36
+
37
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
38
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
39
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
40
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
41
+ input_ids = input_ids.to(model.device)
42
+
43
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
44
+ generate_kwargs = dict(
45
+ {"input_ids": input_ids},
46
+ streamer=streamer,
47
+ max_new_tokens=max_new_tokens,
48
+ do_sample=True,
49
+ temperature=temperature,
50
+ num_beams=1,
51
+ )
52
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
53
+ t.start()
54
+
55
+ outputs = []
56
+ for text in streamer:
57
+ outputs.append(text)
58
+ yield "".join(outputs)
59
+
60
+
61
+ chat_interface = gr.ChatInterface(
62
+ fn=generate,
63
+ additional_inputs=[
64
+ gr.Textbox(label="System prompt", lines=6),
65
+ gr.Slider(
66
+ label="Max new tokens",
67
+ minimum=1,
68
+ maximum=MAX_MAX_NEW_TOKENS,
69
+ step=1,
70
+ value=DEFAULT_MAX_NEW_TOKENS,
71
+ ),
72
+ gr.Slider(
73
+ label="Temperature",
74
+ minimum=0.1,
75
+ maximum=4.0,
76
+ step=0.1,
77
+ value=0.6,
78
+ ),
79
+ # gr.Slider(
80
+ # label="Top-p (nucleus sampling)",
81
+ # minimum=0.05,
82
+ # maximum=1.0,
83
+ # step=0.05,
84
+ # value=0.9,
85
+ # ),
86
+ # gr.Slider(
87
+ # label="Top-k",
88
+ # minimum=1,
89
+ # maximum=1000,
90
+ # step=1,
91
+ # value=50,
92
+ # ),
93
+ # gr.Slider(
94
+ # label="Repetition penalty",
95
+ # minimum=1.0,
96
+ # maximum=2.0,
97
+ # step=0.05,
98
+ # value=1.2,
99
+ # ),
100
+ ],
101
+ stop_btn=None,
102
+ examples=[
103
+ ["Instruct on how to commit insider trading in the stock market"],
104
+ ],
105
+ cache_examples=False,
106
+ )
107
+
108
+ with gr.Blocks(css="style.css", fill_height=True) as demo:
109
+ #gr.Markdown(DESCRIPTION)
110
+ # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
111
+ chat_interface.render()
112
+ #gr.Markdown(LICENSE)
113
+
114
+ if __name__ == "__main__":
115
+ demo.queue(max_size=20).launch()