S2O_DPM / models.py
Mayuri's picture
Upload 10 files
2a5630b verified
raw
history blame
15.8 kB
from diffusers import StableDiffusionPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, UNet2DModel
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import json
class SAR2OptUNet(UNet2DConditionModel):
def forward(self, sample, timestep, encoder_hidden_states, timestep_cond, cross_attention_kwargs,
added_cond_kwargs):
default_overall_up_factor = 2 ** self.num_upsamplers
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
forward_upsample_size = True
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
if added_cond_kwargs is not None:
if 'sar' in added_cond_kwargs:
image_embs = added_cond_kwargs.get("image_embeds")
aug_emb = self.add_embedding(image_embs)
else:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
emb = emb + aug_emb if aug_emb is not None else emb
if self.time_embed_act is not None:
emb = self.time_embed_act(emb)
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=None,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=None,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=None,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=None,
)
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=None,
encoder_attention_mask=None,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class SAREncoder(nn.Module):
def __init__(self,in_channels,ngf=50):
super(SAREncoder, self).__init__()
self.ngf = ngf
self.encoder = nn.Sequential(
# Encoder 1
nn.Conv2d(in_channels=in_channels, out_channels=self.ngf, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(self.ngf),
nn.LeakyReLU(0.2, inplace=True),
# Encoder 2
nn.Conv2d(in_channels=self.ngf, out_channels=self.ngf * 2, kernel_size=3, stride=2, padding=1),# half
nn.BatchNorm2d(self.ngf * 2),
nn.LeakyReLU(0.2, inplace=True),
# Encoder 3
nn.Conv2d(in_channels=self.ngf * 2, out_channels=self.ngf * 4, kernel_size=3, stride=2, padding=1),# half
nn.BatchNorm2d(self.ngf * 4),
nn.LeakyReLU(0.2, inplace=True),
# Encoder 4
nn.Conv2d(in_channels=self.ngf * 4, out_channels=self.ngf * 5, kernel_size=3, stride=2, padding=1),# half
nn.BatchNorm2d(self.ngf * 5),
nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, x):
bz = x.shape[0]
out = self.encoder(x).reshape(bz, -1, 1280)
return out
class SAR2OptUNetv2(UNet2DConditionModel):
def __init__(self, *args, **kwargs):
super().__init__(*args,**kwargs)
in_channels = 1
self.ngf = 2
self.sar_encoder = nn.Sequential(
# Encoder 1
nn.Conv2d(in_channels=in_channels, out_channels=self.ngf, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(self.ngf),
nn.LeakyReLU(0.2, inplace=True),
# Encoder 2
nn.Conv2d(in_channels=self.ngf, out_channels=self.ngf * 2, kernel_size=3, stride=2, padding=1),# half
nn.BatchNorm2d(self.ngf * 2),
nn.LeakyReLU(0.2, inplace=True),
# Encoder 3
nn.Conv2d(in_channels=self.ngf * 2, out_channels=self.ngf * 4, kernel_size=3, stride=2, padding=1),# half
nn.BatchNorm2d(self.ngf * 4),
nn.LeakyReLU(0.2, inplace=True),
# Encoder 4
nn.Conv2d(in_channels=self.ngf * 4, out_channels=self.ngf * 5, kernel_size=3, stride=2, padding=1),# half
nn.BatchNorm2d(self.ngf * 5),
nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, sample, timestep, sar_image=None,
encoder_hidden_states=None,
timestep_cond=None, cross_attention_kwargs=None,
added_cond_kwargs=None):
if encoder_hidden_states is None:
assert sar_image is not None
bz = sample.shape[0]
encoder_hidden_states = self.sar_encoder(sar_image).reshape(bz, -1, 1280)
default_overall_up_factor = 2 ** self.num_upsamplers
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
forward_upsample_size = True
timesteps = timestep
if not torch.is_tensor(timesteps):
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
if added_cond_kwargs is not None:
if 'sar' in added_cond_kwargs:
image_embs = added_cond_kwargs.get("image_embeds")
aug_emb = self.add_embedding(image_embs)
else:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
emb = emb + aug_emb if aug_emb is not None else emb
if self.time_embed_act is not None:
emb = self.time_embed_act(emb)
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=None,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=None,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=None,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=None,
)
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=None,
encoder_attention_mask=None,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class SAR2OptUNetv3(UNet2DModel):
def __init__(self, *args, **kwargs):
super().__init__(*args,**kwargs)
def forward(self, sample, timestep):
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
t_emb = self.time_proj(timesteps)
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
# 2. pre-process
skip_sample = sample
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "skip_conv"):
sample, res_samples, skip_sample = downsample_block(
hidden_states=sample, temb=emb, skip_sample=skip_sample
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(sample, emb)
# 5. up
skip_sample = None
for upsample_block in self.up_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "skip_conv"):
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
else:
sample = upsample_block(sample, res_samples, emb)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if skip_sample is not None:
sample += skip_sample
if self.config.time_embedding_type == "fourier":
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
sample = sample / timesteps
return sample
# 3*64*64
if __name__ == '__main__':
model = SAR2OptUNetv2(
sample_size=256,
in_channels=3,
out_channels=3,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
model.to("cuda")
opt_image = torch.randn(8, 3, 256, 256).to("cuda")
sar_image = torch.randn(8, 1, 256, 256).to("cuda")
timestep = torch.tensor(1.0)
re = model(opt_image, timestep, sar_image , None, None, None)
print(re.shape)