import torch import torch.nn as nn from torch.nn import functional as F from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap, ZFeatureMap from qiskit import QuantumCircuit from qiskit_machine_learning.neural_networks import SamplerQNN from qiskit_machine_learning.connectors import TorchConnector from dataclasses import dataclass # Quantum Neural Network setup num_qubits = 8 def create_qnn(): """Creates a Quantum Neural Network.""" feature_map = ZFeatureMap(num_qubits, reps=32) ansatz = RealAmplitudes(num_qubits, reps=32) qc = QuantumCircuit(num_qubits) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qnn = SamplerQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, ) return qnn # Model Components class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.n_head = config.n_head self.n_embd = config.n_embd def forward(self, x): B, T, C = x.size() # Batch size, sequence length, embedding size qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.quantum_embedding = nn.Linear(config.n_embd, num_qubits) self.qnn_layer = TorchConnector(create_qnn()) self.output_layer = nn.Linear(2 ** num_qubits, 1024) def forward(self, x): x = self.quantum_embedding(x) x = self.qnn_layer(x) x = self.gelu(x) x = self.output_layer(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50257 n_layer: int = 24 n_head: int = 16 n_embd: int = 1024 class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=nn.LayerNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.size() assert T <= self.config.block_size, "Sequence length exceeds block size" pos = torch.arange(0, T, dtype=torch.long, device=idx.device) tok_emb = self.transformer.wte(idx) pos_emb = self.transformer.wpe(pos) x = tok_emb + pos_emb for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss # Export the architecture for inference if __name__ == "__main__": config = GPTConfig() model = GPT(config) print(f"Model architecture:\n{model}")