Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,22 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
from PyPDF2 import PdfReader
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.document_loaders import UnstructuredPDFLoader
|
7 |
-
from langchain.text_splitter import CharacterTextSplitter
|
8 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain.vectorstores import FAISS
|
10 |
-
from langchain.chat_models import ChatOpenAI
|
11 |
-
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain.chains import ConversationalRetrievalChain
|
13 |
-
from htmlTemplates import css,
|
14 |
-
from langchain.llms import HuggingFaceHub
|
15 |
-
from langchain.vectorstores import Chroma
|
16 |
-
from gpt4all import GPT4All
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
21 |
-
|
22 |
-
|
23 |
-
def add_logo():
|
24 |
-
|
25 |
-
st.markdown(
|
26 |
-
f"""
|
27 |
<style>
|
28 |
[data-testid="stSidebar"] {{
|
29 |
background-image: url(https://smbk.s3.amazonaws.com/media/organization_logos/111579646d1241f4be17bd7394dcb238.jpg);
|
@@ -32,220 +25,80 @@ def add_logo():
|
|
32 |
background-position: 20px 20px;
|
33 |
}}
|
34 |
</style>
|
35 |
-
""",
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
str
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
#
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
""
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
# embeddings = HuggingFaceBgeEmbeddings(
|
113 |
-
# model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
|
114 |
-
# )
|
115 |
-
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
116 |
-
# return vectorstore
|
117 |
-
|
118 |
-
|
119 |
-
def get_vectorstore(text_chunks):
|
120 |
-
"""
|
121 |
-
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
|
122 |
-
Parameters
|
123 |
-
----------
|
124 |
-
text_chunks : list
|
125 |
-
List of text chunks to be embedded.
|
126 |
-
Returns
|
127 |
-
-------
|
128 |
-
FAISS
|
129 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
130 |
-
"""
|
131 |
-
MODEL_NAME = "WhereIsAI/UAE-Large-V1"
|
132 |
-
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
133 |
-
#MODEL_NAME = "avsolatorio/GIST-Embedding-v0"
|
134 |
-
MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
|
135 |
-
MODEL_NAME="avsolatorio/GIST-Embedding-v0"
|
136 |
-
#MODEL_NAME="intfloat/multilingual-e5-base"
|
137 |
-
#MODEL_NAME="BAAI/bge-base-en-v1.5" Alucina un poco
|
138 |
-
MODEL_NAME="BAAI/bge-large-en-v1.5"
|
139 |
-
hf_embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
140 |
-
vectorstore = Chroma.from_documents(text_chunks, hf_embeddings, persist_directory="db")
|
141 |
-
return vectorstore
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
|
147 |
-
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
148 |
-
#llm = HuggingFaceHub(
|
149 |
-
# repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
150 |
-
# #repo_id="clibrain/lince-mistral-7b-it-es",
|
151 |
-
# #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
152 |
-
# model_kwargs={"temperature": 0.5, "max_length": 2096},#1048
|
153 |
-
#)
|
154 |
-
llm = HuggingFaceHub(
|
155 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
156 |
-
model_kwargs={"temperature": 0.5, "max_new_tokens": 1024, "max_length": 1048, "top_k": 3, "trust_remote_code": True, "torch_dtype": "auto"},
|
157 |
-
)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
163 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(
|
164 |
-
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
165 |
-
)
|
166 |
-
return conversation_chain
|
167 |
-
|
168 |
-
|
169 |
-
#def handle_userinput(user_question:str):
|
170 |
-
# response = st.session_state.conversation({"pregunta": user_question})
|
171 |
-
# st.session_state.chat_history = response["chat_history"]
|
172 |
-
#
|
173 |
-
# for i, message in enumerate(st.session_state.chat_history):
|
174 |
-
# if i % 2 == 0:
|
175 |
-
# st.write(" Usuario: " + message.content)
|
176 |
-
# else:
|
177 |
-
# st.write("🤖 ChatBot: " + message.content)
|
178 |
-
|
179 |
-
|
180 |
-
def handle_userinput(user_question):
|
181 |
-
"""
|
182 |
-
Handle user input and generate a response using the conversational retrieval chain.
|
183 |
-
Parameters
|
184 |
-
----------
|
185 |
-
user_question : str
|
186 |
-
The user's question.
|
187 |
-
"""
|
188 |
-
response = st.session_state.conversation({"question": user_question})
|
189 |
-
st.session_state.chat_history = response["chat_history"]
|
190 |
-
|
191 |
-
for i, message in enumerate(st.session_state.chat_history):
|
192 |
-
if i % 2 == 0:
|
193 |
-
st.write("//_^ User: " + message.content)
|
194 |
-
else:
|
195 |
-
st.write("🤖 ChatBot: " + message.content)
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
def main():
|
201 |
-
st.set_page_config(
|
202 |
-
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
203 |
-
page_icon=":books:",
|
204 |
-
)
|
205 |
-
|
206 |
-
#st.markdown("# Charla con TedCasBot")
|
207 |
-
#st.markdown("Este Bot será tu aliado a la hora de buscar información en múltiples documentos pdf. Déjanos ayudarte! 🙏🏾")
|
208 |
-
st.markdown("# Chat with TedCasBot")
|
209 |
-
st.markdown("This Bot is a powerful AI tool designed to simplify the process of extracting information from PDF documents")
|
210 |
-
|
211 |
-
st.write(css, unsafe_allow_html=True)
|
212 |
-
|
213 |
-
|
214 |
-
if "conversation" not in st.session_state:
|
215 |
-
st.session_state.conversation = None
|
216 |
-
if "chat_history" not in st.session_state:
|
217 |
-
st.session_state.chat_history = None
|
218 |
-
|
219 |
-
|
220 |
-
#st.header("Charla con un Bot 🤖🦾 que te ayudará a responder preguntas sobre tus pdfs:")
|
221 |
-
st.header("Chat with the TedCasBot. He will help you with any doubt you may have with your documents:")
|
222 |
-
|
223 |
-
user_question = st.text_input("Ask what you need!:")
|
224 |
-
if user_question:
|
225 |
-
handle_userinput(user_question)
|
226 |
-
|
227 |
-
|
228 |
-
with st.sidebar:
|
229 |
-
add_logo()
|
230 |
-
st.subheader("Your documents")
|
231 |
-
pdf_docs = st.file_uploader(
|
232 |
-
"Upload your documents and ress 'Process'", accept_multiple_files=True
|
233 |
-
)
|
234 |
-
if st.button("Process"):
|
235 |
-
with st.spinner("Processing"):
|
236 |
-
# get pdf text
|
237 |
-
raw_text = get_pdf_text(pdf_docs)
|
238 |
-
pages = get_pdf_pages(pdf_docs)
|
239 |
-
|
240 |
-
# get the text chunks
|
241 |
-
#text_chunks = get_text_chunks(raw_text)
|
242 |
-
text_chunks = get_text_chunks(pages)
|
243 |
-
# create vector store
|
244 |
-
vectorstore = get_vectorstore(text_chunks)
|
245 |
-
|
246 |
-
# create conversation chain
|
247 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
248 |
-
|
249 |
-
|
250 |
-
if __name__ == "__main__":
|
251 |
-
main()
|
|
|
1 |
+
import os #line:1
|
2 |
+
import streamlit as st #line:2
|
3 |
+
from dotenv import load_dotenv #line:3
|
4 |
+
from PyPDF2 import PdfReader #line:4
|
5 |
+
from langchain .text_splitter import RecursiveCharacterTextSplitter #line:5
|
6 |
+
from langchain .document_loaders import UnstructuredPDFLoader #line:6
|
7 |
+
from langchain .text_splitter import CharacterTextSplitter #line:7
|
8 |
+
from langchain .embeddings import HuggingFaceEmbeddings #line:8
|
9 |
+
from langchain .vectorstores import FAISS #line:9
|
10 |
+
from langchain .chat_models import ChatOpenAI #line:10
|
11 |
+
from langchain .memory import ConversationBufferMemory #line:11
|
12 |
+
from langchain .chains import ConversationalRetrievalChain #line:12
|
13 |
+
from htmlTemplates import css ,bot_template ,user_template #line:13
|
14 |
+
from langchain .llms import HuggingFaceHub #line:14
|
15 |
+
from langchain .vectorstores import Chroma #line:15
|
16 |
+
from gpt4all import GPT4All #line:16
|
17 |
+
os .environ ["HUGGINGFACEHUB_API_TOKEN"]=st .secrets ['huggingface_token']#line:20
|
18 |
+
def add_logo ():#line:23
|
19 |
+
st .markdown (f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
<style>
|
21 |
[data-testid="stSidebar"] {{
|
22 |
background-image: url(https://smbk.s3.amazonaws.com/media/organization_logos/111579646d1241f4be17bd7394dcb238.jpg);
|
|
|
25 |
background-position: 20px 20px;
|
26 |
}}
|
27 |
</style>
|
28 |
+
""",unsafe_allow_html =True ,)#line:37
|
29 |
+
def get_pdf_text (OOO0OO00OO0OOO0OO :list )->str :#line:43
|
30 |
+
OO0OOO000000O0OOO =""#line:44
|
31 |
+
for O0OO000O0OOO00O0O in OOO0OO00OO0OOO0OO :#line:45
|
32 |
+
O0O00OO0O00O0OOOO =PdfReader (O0OO000O0OOO00O0O )#line:46
|
33 |
+
for OO0OOO000O0000O00 in O0O00OO0O00O0OOOO .pages :#line:47
|
34 |
+
OO0OOO000000O0OOO +=OO0OOO000O0000O00 .extract_text ()#line:48
|
35 |
+
return OO0OOO000000O0OOO #line:49
|
36 |
+
def get_pdf_pages (OOOO000000OOOO0O0 ):#line:51
|
37 |
+
""#line:62
|
38 |
+
OO0OO0O0OO0OO000O =[]#line:63
|
39 |
+
import tempfile #line:64
|
40 |
+
with tempfile .TemporaryDirectory ()as OOO0000O000O00OOO :#line:66
|
41 |
+
for OO0OOO0O000OO0OO0 in OOOO000000OOOO0O0 :#line:67
|
42 |
+
OO0OOO00OOOOOOO0O =os .path .join (OOO0000O000O00OOO ,OO0OOO0O000OO0OO0 .name )#line:68
|
43 |
+
with open (OO0OOO00OOOOOOO0O ,"wb")as O0OOOOO0O0O0OO00O :#line:69
|
44 |
+
O0OOOOO0O0O0OO00O .write (OO0OOO0O000OO0OO0 .getbuffer ())#line:70
|
45 |
+
OOO000OO0OO00OOO0 =UnstructuredPDFLoader (OO0OOO00OOOOOOO0O )#line:72
|
46 |
+
OOOO0OOOOO000OOO0 =OOO000OO0OO00OOO0 .load_and_split ()#line:73
|
47 |
+
OO0OO0O0OO0OO000O =OO0OO0O0OO0OO000O +OOOO0OOOOO000OOO0 #line:74
|
48 |
+
return OO0OO0O0OO0OO000O #line:75
|
49 |
+
def get_text_chunks (OOOO00OOOOO0O00OO ):#line:85
|
50 |
+
""#line:96
|
51 |
+
OO0OOO00O000OO0OO =RecursiveCharacterTextSplitter (chunk_size =1024 ,chunk_overlap =64 )#line:99
|
52 |
+
O00O0OOOOOOOOO00O =OO0OOO00O000OO0OO .split_documents (OOOO00OOOOO0O00OO )#line:100
|
53 |
+
print (str (len (O00O0OOOOOOOOO00O )))#line:101
|
54 |
+
return O00O0OOOOOOOOO00O #line:102
|
55 |
+
def get_vectorstore (O00000O0O0OOOO0OO ):#line:119
|
56 |
+
""#line:130
|
57 |
+
O000O00OO00O00OO0 ="WhereIsAI/UAE-Large-V1"#line:131
|
58 |
+
O000O00OO00O00OO0 ="sentence-transformers/all-MiniLM-L6-v2"#line:132
|
59 |
+
O000O00OO00O00OO0 ="intfloat/e5-mistral-7b-instruct"#line:134
|
60 |
+
O000O00OO00O00OO0 ="avsolatorio/GIST-Embedding-v0"#line:135
|
61 |
+
O000O00OO00O00OO0 ="BAAI/bge-large-en-v1.5"#line:138
|
62 |
+
O0O0OO0O0O00O0O00 =HuggingFaceEmbeddings (model_name =O000O00OO00O00OO0 )#line:139
|
63 |
+
O00O0OOOO0O0000OO =Chroma .from_documents (O00000O0O0OOOO0OO ,O0O0OO0O0O00O0O00 ,persist_directory ="db")#line:140
|
64 |
+
return O00O0OOOO0O0000OO #line:141
|
65 |
+
def get_conversation_chain (OOOOOOO0OOOO0000O :FAISS )->ConversationalRetrievalChain :#line:146
|
66 |
+
O000OO0O00000O0O0 =HuggingFaceHub (repo_id ="mistralai/Mixtral-8x7B-Instruct-v0.1",model_kwargs ={"temperature":0.5 ,"max_new_tokens":1024 ,"max_length":1048 ,"top_k":3 ,"trust_remote_code":True ,"torch_dtype":"auto"},)#line:157
|
67 |
+
OO0000OOO00000000 =ConversationBufferMemory (memory_key ="chat_history",return_messages =True )#line:162
|
68 |
+
OOO0OO0O00OO0O0O0 =ConversationalRetrievalChain .from_llm (llm =O000OO0O00000O0O0 ,retriever =OOOOOOO0OOOO0000O .as_retriever (),memory =OO0000OOO00000000 )#line:165
|
69 |
+
return OOO0OO0O00OO0O0O0 #line:166
|
70 |
+
def handle_userinput (OO000OO000O0O0000 ):#line:180
|
71 |
+
""#line:187
|
72 |
+
O0OOO0O0OOO0OO00O =st .session_state .conversation ({"question":OO000OO000O0O0000 })#line:188
|
73 |
+
st .session_state .chat_history =O0OOO0O0OOO0OO00O ["chat_history"]#line:189
|
74 |
+
for O0OOOOOOOO0OOOOOO ,O0O00OOOOOOOO0O00 in enumerate (st .session_state .chat_history ):#line:191
|
75 |
+
if O0OOOOOOOO0OOOOOO %2 ==0 :#line:192
|
76 |
+
st .write ("//_^ User: "+O0O00OOOOOOOO0O00 .content )#line:193
|
77 |
+
else :#line:194
|
78 |
+
st .write ("🤖 ChatBot: "+O0O00OOOOOOOO0O00 .content )#line:195
|
79 |
+
def main ():#line:200
|
80 |
+
st .set_page_config (page_title ="Chat with a Bot that tries to answer questions about multiple PDFs",page_icon =":books:",)#line:204
|
81 |
+
st .markdown ("# Chat with TedCasBot")#line:208
|
82 |
+
st .markdown ("This Bot is a powerful AI tool designed to simplify the process of extracting information from PDF documents")#line:209
|
83 |
+
st .write (css ,unsafe_allow_html =True )#line:211
|
84 |
+
if "conversation"not in st .session_state :#line:214
|
85 |
+
st .session_state .conversation =None #line:215
|
86 |
+
if "chat_history"not in st .session_state :#line:216
|
87 |
+
st .session_state .chat_history =None #line:217
|
88 |
+
st .header ("Chat with the TedCasBot. He will help you with any doubt you may have with your documents:")#line:221
|
89 |
+
O00O00O00OO0000OO =st .text_input ("Ask what you need!:")#line:223
|
90 |
+
if O00O00O00OO0000OO :#line:224
|
91 |
+
handle_userinput (O00O00O00OO0000OO )#line:225
|
92 |
+
with st .sidebar :#line:228
|
93 |
+
add_logo ()#line:229
|
94 |
+
st .subheader ("Your documents")#line:230
|
95 |
+
O00O0O0O0O000000O =st .file_uploader ("Upload your documents and ress 'Process'",accept_multiple_files =True )#line:233
|
96 |
+
if st .button ("Process"):#line:234
|
97 |
+
with st .spinner ("Processing"):#line:235
|
98 |
+
O000000OOO00OO0O0 =get_pdf_text (O00O0O0O0O000000O )#line:237
|
99 |
+
OOOOOO000O000O00O =get_pdf_pages (O00O0O0O0O000000O )#line:238
|
100 |
+
O0000O00O0OOO0O00 =get_text_chunks (OOOOOO000O000O00O )#line:242
|
101 |
+
OO0O0OOO0O0000O0O =get_vectorstore (O0000O00O0OOO0O00 )#line:244
|
102 |
+
st .session_state .conversation =get_conversation_chain (OO0O0OOO0O0000O0O )#line:247
|
103 |
+
if __name__ =="__main__":#line:250
|
104 |
+
main ()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|