from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "microsoft/Phi-4-mini-instruct" # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # Generate a response def chat_with_model(prompt, max_new_tokens=100): inputs = tokenizer(prompt, return_tensors="pt").to("cpu") # Move to GPU if available output = model.generate(**inputs, max_new_tokens=max_new_tokens) return tokenizer.decode(output[0], skip_special_tokens=True) # Test the model user_input = "Explain quantum computing in simple terms." response = chat_with_model(user_input) print("Chatbot Response:", response)