pip install PyPDF2 import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("your_huggingface_model_path") model = AutoModelForSequenceClassification.from_pretrained("your_huggingface_model_path") # Define genre labels genre_labels = ["mystery", "sci-fi", "fantasy", "romance", "thriller", "horror", "drama", "comedy",     "historical fiction", "adventure", "action", "young adult", "classic", "biography",     "non-fiction", "self-help", "children's literature", "poetry", "crime", "dystopian"] st.title("Book Genre Classifier") # Text input #file = st.file_uploader("Upload the pdf file") #import streamlit as st from PyPDF2 import PdfReader # Streamlit app st.subheader("PDF Text Extractor") # Upload PDF uploaded_file = st.file_uploader("Upload a PDF file", type="pdf") if uploaded_file: # Extract text from the uploaded PDF reader = PdfReader(uploaded_file) all_text = "" for page in reader.pages: all_text += page.extract_text() # Display extracted text st.subheader("Extracted Text") st.text_area("PDF Content", all_text, height=300) #book_text = st.text_area("Enter the book's text or summary:", "") if st.button("Classify"):     with st.spinner("Classifying..."):         inputs = tokenizer(all_text, return_tensors="pt", truncation=True, padding=True)         outputs = model(**inputs)         scores = torch.softmax(outputs.logits, dim=1).detach().numpy()         # Display results         st.subheader("Predicted Genres:")         for i, label in enumerate(genre_labels):             st.write(f"{label}: {scores[0][i]:.2f}")