Spaces:
Sleeping
Sleeping
Create app.py
Browse filesTo extract the text from the pdf file and return the genre labels. #the model and pretrained model
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install PyPDF2
|
2 |
+
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("your_huggingface_model_path")
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained("your_huggingface_model_path")
|
11 |
+
|
12 |
+
# Define genre labels
|
13 |
+
genre_labels = ["mystery", "sci-fi", "fantasy", "romance", "thriller", "horror", "drama", "comedy",
|
14 |
+
"historical fiction", "adventure", "action", "young adult", "classic", "biography",
|
15 |
+
"non-fiction", "self-help", "children's literature", "poetry", "crime", "dystopian"]
|
16 |
+
|
17 |
+
st.title("Book Genre Classifier")
|
18 |
+
|
19 |
+
# Text input
|
20 |
+
#file = st.file_uploader("Upload the pdf file")
|
21 |
+
|
22 |
+
|
23 |
+
#import streamlit as st
|
24 |
+
from PyPDF2 import PdfReader
|
25 |
+
|
26 |
+
# Streamlit app
|
27 |
+
st.subheader("PDF Text Extractor")
|
28 |
+
|
29 |
+
# Upload PDF
|
30 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
31 |
+
|
32 |
+
if uploaded_file:
|
33 |
+
# Extract text from the uploaded PDF
|
34 |
+
reader = PdfReader(uploaded_file)
|
35 |
+
all_text = ""
|
36 |
+
for page in reader.pages:
|
37 |
+
all_text += page.extract_text()
|
38 |
+
|
39 |
+
# Display extracted text
|
40 |
+
st.subheader("Extracted Text")
|
41 |
+
st.text_area("PDF Content", all_text, height=300)
|
42 |
+
#book_text = st.text_area("Enter the book's text or summary:", "")
|
43 |
+
|
44 |
+
if st.button("Classify"):
|
45 |
+
with st.spinner("Classifying..."):
|
46 |
+
inputs = tokenizer(all_text, return_tensors="pt", truncation=True, padding=True)
|
47 |
+
outputs = model(**inputs)
|
48 |
+
scores = torch.softmax(outputs.logits, dim=1).detach().numpy()
|
49 |
+
|
50 |
+
# Display results
|
51 |
+
st.subheader("Predicted Genres:")
|
52 |
+
for i, label in enumerate(genre_labels):
|
53 |
+
st.write(f"{label}: {scores[0][i]:.2f}")
|