Fluospark128 commited on
Commit
e9af6cc
·
verified ·
1 Parent(s): c3fcdee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -34,7 +34,7 @@ if pdf_file is not None:
34
  st.write("PDF Text Extracted. Predicting the Genres...")
35
  classifier = pipeline("zero-shot-classification", model = "facebook/bart-large-mnli") #load_classifier()
36
  # Define candidate genres
37
- candidate_labels ["Scientific Papers", "Technical Documentation", "Research Reports", "Academic Journals", "White Papers", "Technical Manuals", "Patents", "Software Documentation", "Engineering Specifications", "Computer Science Literature", "Machine Learning Publications", "Data Science Reports", "Network Architecture Descriptions", "Cybersecurity Analysis", "Algorithm Descriptions", "Fantasy", "Science Fiction", "Mystery", "Thriller", "Romance", "Historical Fiction", "Horror", "Adventure", "Crime", "Western", "Dystopian", "Magical Realism", "Young Adult", "Children's Literature", "Gothic", "Biography", "Autobiography", "Memoir", "Travel Writing", "History", "Philosophy", "Psychology", "Self-Help", "Political Commentary", "True Crime", "Nature Writing", "Cultural Studies", "Sociology", "Anthropology", "Religious Studies", "Poetry", "Drama", "Epic", "Short Story", "Novel", "Novella", "Satire", "Tragedy", "Comedy", "Tragicomedy", "News Reporting", "Feature Writing", "Opinion Pieces", "Investigative Journalism", "Editorial", "Profile Writing", "Sports Writing", "Political Journalism", "Dissertation", "Thesis", "Critical Analysis", "Comparative Study", "Literature Review", "Meta-Analysis", " Case Study"] #
38
  # Perform zero-shot classification
39
  result = classifier(text[:3000], candidate_labels, multi_label=True) #[:1000]), candidate_labels, multi_label=True)
40
  genres = sorted(zip(result["labels"], result["scores"]), key=lambda x: x[1], reverse=True)
 
34
  st.write("PDF Text Extracted. Predicting the Genres...")
35
  classifier = pipeline("zero-shot-classification", model = "facebook/bart-large-mnli") #load_classifier()
36
  # Define candidate genres
37
+ candidate_labels = ["Scientific Papers", "Technical Documentation", "Research Reports", "Academic Journals", "White Papers", "Technical Manuals", "Patents", "Software Documentation", "Engineering Specifications", "Computer Science Literature", "Machine Learning Publications", "Data Science Reports", "Network Architecture Descriptions", "Cybersecurity Analysis", "Algorithm Descriptions", "Fantasy", "Science Fiction", "Mystery", "Thriller", "Romance", "Historical Fiction", "Horror", "Adventure", "Crime", "Western", "Dystopian", "Magical Realism", "Young Adult", "Children's Literature", "Gothic", "Biography", "Autobiography", "Memoir", "Travel Writing", "History", "Philosophy", "Psychology", "Self-Help", "Political Commentary", "True Crime", "Nature Writing", "Cultural Studies", "Sociology", "Anthropology", "Religious Studies", "Poetry", "Drama", "Epic", "Short Story", "Novel", "Novella", "Satire", "Tragedy", "Comedy", "Tragicomedy", "News Reporting", "Feature Writing", "Opinion Pieces", "Investigative Journalism", "Editorial", "Profile Writing", "Sports Writing", "Political Journalism", "Dissertation", "Thesis", "Critical Analysis", "Comparative Study", "Literature Review", "Meta-Analysis", " Case Study"] #
38
  # Perform zero-shot classification
39
  result = classifier(text[:3000], candidate_labels, multi_label=True) #[:1000]), candidate_labels, multi_label=True)
40
  genres = sorted(zip(result["labels"], result["scores"]), key=lambda x: x[1], reverse=True)