|
import gradio as gr |
|
import pandas as pd |
|
import plotly.express as px |
|
|
|
|
|
BETTERTRANSFORMER_DATA = [ |
|
|
|
"Model 🤗", |
|
"DType 📥", |
|
"Backend 🏭", |
|
"Params (B)", |
|
"Architecture 🏛️", |
|
"Open LLM Score (%)", |
|
|
|
"DType 📥", |
|
"Backend 🏭", |
|
"Optimization 🛠️", |
|
"Quantization 🗜️", |
|
"Optimization 🛠️ BetterTransformer", |
|
|
|
"Prefill (s)", |
|
"Prefill (s) BetterTransformer", |
|
"Decode (tokens/s)", |
|
"Decode (tokens/s) BetterTransformer", |
|
"End-to-End (tokens/s)", |
|
"End-to-End (tokens/s) BetterTransformer", |
|
|
|
"Prefill Speedup (%)", |
|
"Decode Speedup (%)", |
|
] |
|
|
|
|
|
def get_bt_df(llm_perf_df): |
|
copy_df = llm_perf_df.copy() |
|
|
|
original_df = copy_df[(copy_df["Optimization 🛠️"] == "None") & (copy_df["DType 📥"] == "float16")] |
|
bt_df = copy_df[(copy_df["Optimization 🛠️"] == "BetterTransformer") & (copy_df["DType 📥"] == "float16")] |
|
|
|
bt_df = pd.merge( |
|
original_df, |
|
bt_df, |
|
on=["Model 🤗", "Quantization 🗜️"], |
|
suffixes=["", " BetterTransformer"], |
|
) |
|
|
|
bt_df["Prefill Speedup (%)"] = ( |
|
(bt_df["Prefill (s)"] / bt_df["Prefill (s) BetterTransformer"]) * 100 |
|
).round(2) - 100 |
|
bt_df["Decode Speedup (%)"] = ( |
|
(bt_df["Decode (tokens/s) BetterTransformer"] / bt_df["Decode (tokens/s)"]) * 100 |
|
).round(2) - 100 |
|
|
|
bt_df = bt_df[bt_df["Prefill Speedup (%)"] < 1000] |
|
bt_df = bt_df[bt_df["Decode Speedup (%)"] < 1000] |
|
|
|
return bt_df |
|
|
|
|
|
def get_bt_prefill_fig(llm_perf_df): |
|
bt_df = get_bt_df(llm_perf_df) |
|
|
|
prefill_fig = px.box( |
|
bt_df, |
|
x="Architecture 🏛️", |
|
y="Prefill Speedup (%)", |
|
color_discrete_sequence=px.colors.qualitative.Light24, |
|
custom_data=BETTERTRANSFORMER_DATA, |
|
color="Quantization 🗜️", |
|
points="all", |
|
) |
|
|
|
prefill_fig.update_traces( |
|
hovertemplate="<br>".join( |
|
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)] |
|
) |
|
) |
|
|
|
prefill_fig.update_layout( |
|
title={ |
|
"text": "Prefill Speedup per Architecture, Compared To Non-Optimized Model", |
|
"y": 0.95, |
|
"x": 0.5, |
|
"xanchor": "center", |
|
"yanchor": "top", |
|
}, |
|
xaxis_title="LLM Architecture", |
|
yaxis_title="Prefill Speedup (%)", |
|
legend_title="Quantization Scheme", |
|
width=1200, |
|
height=600, |
|
) |
|
|
|
return prefill_fig |
|
|
|
|
|
def get_bt_decode_fig(llm_perf_df): |
|
bt_df = get_bt_df(llm_perf_df) |
|
|
|
decode_fig = px.box( |
|
bt_df, |
|
x="Architecture 🏛️", |
|
y="Decode Speedup (%)", |
|
color_discrete_sequence=px.colors.qualitative.Light24, |
|
custom_data=BETTERTRANSFORMER_DATA, |
|
color="Quantization 🗜️", |
|
points="all", |
|
) |
|
|
|
decode_fig.update_traces( |
|
hovertemplate="<br>".join( |
|
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)] |
|
) |
|
) |
|
|
|
decode_fig.update_layout( |
|
title={ |
|
"text": "Decode Speedup per Architecture, Compared To Non-Optimized Model", |
|
"y": 0.95, |
|
"x": 0.5, |
|
"xanchor": "center", |
|
"yanchor": "top", |
|
}, |
|
xaxis_title="LLM Architecture", |
|
yaxis_title="Decode Speedup (%)", |
|
legend_title="Quantization Scheme", |
|
width=1200, |
|
height=600, |
|
) |
|
|
|
return decode_fig |
|
|
|
|
|
def create_bt_plots(llm_perf_df): |
|
|
|
gr.HTML("👆 Hover over the points 👆 for additional information.", elem_id="text") |
|
|
|
prefill_fig = get_bt_prefill_fig(llm_perf_df) |
|
decode_fig = get_bt_decode_fig(llm_perf_df) |
|
|
|
|
|
prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False) |
|
decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False) |
|
|
|
return prefill_plot, decode_plot |
|
|