Spaces:
Running
Running
import gradio as gr # Ensure Gradio is correctly imported | |
import pandas as pd | |
import plotly.express as px | |
from transformers import pipeline | |
from datasets import load_dataset | |
# Load the additional datasets | |
deepseek_prover_v1 = load_dataset('deepseek-ai/DeepSeek-Prover-V1', split='train') | |
cybersecurity_kg = load_dataset('CyberPeace-Institute/Cybersecurity-Knowledge-Graph', split='train') | |
codesearchnet_pep8 = load_dataset('kejian/codesearchnet-python-pep8-v1', split='train') | |
code_text_python = load_dataset('semeru/code-text-python', split='train') | |
# Sample CVE data (for visualization) | |
cve_data = { | |
'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'], | |
'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'], | |
'Description': [ | |
'A critical vulnerability in the web application framework.', | |
'A medium-severity vulnerability in the database management system.', | |
'A low-severity vulnerability in the network firewall.', | |
'A critical vulnerability in the operating system kernel.', | |
'A medium-severity vulnerability in the web server.' | |
], | |
'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'] | |
} | |
# Convert CVE data to a DataFrame | |
cve_df = pd.DataFrame(cve_data) | |
# Function to filter CVEs by severity | |
def filter_cves(severity): | |
filtered_df = cve_df[cve_df['Severity'] == severity] | |
return filtered_df | |
# Function to generate a bar chart of CVEs by severity | |
def generate_cve_chart(): | |
fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity') | |
return fig | |
# Function to analyze the sentiment of a CVE description | |
def analyze_sentiment(description): | |
sentiment_pipeline = pipeline('sentiment-analysis') | |
result = sentiment_pipeline(description) | |
return result | |
# Create the Gradio app | |
with gr.Blocks() as demo: | |
# Title and description | |
gr.Markdown("# Purple Teaming Cyber Security Dashboard") | |
gr.Markdown("This dashboard provides threat intelligence and CVEs for purple teaming.") | |
# CVE Filter | |
with gr.Row(): | |
severity_filter = gr.Dropdown(choices=['High', 'Medium', 'Low'], label='Filter by Severity') | |
cve_table = gr.Dataframe(label='CVEs', value=cve_df) | |
# Event listener for severity filter | |
severity_filter.change(fn=filter_cves, inputs=severity_filter, outputs=cve_table) | |
# CVE Chart | |
with gr.Row(): | |
cve_chart = gr.Plot(label='CVEs by Severity') | |
cve_chart.value = generate_cve_chart() # Directly assign the figure to the Plot component | |
# Sentiment Analysis | |
with gr.Row(): | |
description_input = gr.Textbox(label='CVE Description') | |
sentiment_output = gr.JSON(label='Sentiment Analysis') | |
analyze_btn = gr.Button('Analyze Sentiment') | |
# Event listener for sentiment analysis | |
analyze_btn.click(fn=analyze_sentiment, inputs=description_input, outputs=sentiment_output) | |
# Display additional datasets in the dashboard | |
with gr.Tab("Datasets Overview"): | |
gr.Markdown("## Overview of Additional Datasets") | |
# Display datasets as dataframes | |
with gr.Row(): | |
gr.Dataframe(label="DeepSeek-Prover-V1", value=deepseek_prover_v1) | |
gr.Dataframe(label="Cybersecurity Knowledge Graph", value=cybersecurity_kg) | |
gr.Dataframe(label="Code SearchNet Python PEP8", value=codesearchnet_pep8) | |
gr.Dataframe(label="Code Text Python", value=code_text_python) | |
# Launch the app | |
demo.launch(share=True) |