Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import os | |
import random | |
import re | |
from datetime import datetime | |
from typing import Dict, List, Optional, Tuple | |
import gradio as gr | |
import imageio.v3 as iio | |
import numpy as np | |
import PIL | |
import rootutils | |
import torch | |
from diffusers import ( | |
AutoencoderKLCogVideoX, | |
CogVideoXDPMScheduler, | |
CogVideoXTransformer3DModel, | |
) | |
from transformers import AutoTokenizer, T5EncoderModel | |
import spaces | |
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
from aether.pipelines.aetherv1_pipeline_cogvideox import ( # noqa: E402 | |
AetherV1PipelineCogVideoX, | |
AetherV1PipelineOutput, | |
) | |
from aether.utils.postprocess_utils import ( # noqa: E402 | |
align_camera_extrinsics, | |
apply_transformation, | |
colorize_depth, | |
compute_scale, | |
get_intrinsics, | |
interpolate_poses, | |
postprocess_pointmap, | |
project, | |
raymap_to_poses, | |
) | |
from aether.utils.visualize_utils import predictions_to_glb # noqa: E402 | |
def seed_all(seed: int = 0) -> None: | |
""" | |
Set random seeds of all components. | |
""" | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
# # Global pipeline | |
cogvideox_pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b-I2V" | |
aether_pretrained_model_name_or_path: str = "AetherWorldModel/AetherV1" | |
pipeline = AetherV1PipelineCogVideoX( | |
tokenizer=AutoTokenizer.from_pretrained( | |
cogvideox_pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
), | |
text_encoder=T5EncoderModel.from_pretrained( | |
cogvideox_pretrained_model_name_or_path, subfolder="text_encoder" | |
), | |
vae=AutoencoderKLCogVideoX.from_pretrained( | |
cogvideox_pretrained_model_name_or_path, subfolder="vae", torch_dtype=torch.bfloat16 | |
), | |
scheduler=CogVideoXDPMScheduler.from_pretrained( | |
cogvideox_pretrained_model_name_or_path, subfolder="scheduler" | |
), | |
transformer=CogVideoXTransformer3DModel.from_pretrained( | |
aether_pretrained_model_name_or_path, subfolder="transformer", torch_dtype=torch.bfloat16 | |
), | |
) | |
pipeline.vae.enable_slicing() | |
pipeline.vae.enable_tiling() | |
# pipeline.to(device) | |
def build_pipeline(device: torch.device) -> AetherV1PipelineCogVideoX: | |
"""Initialize the model pipeline.""" | |
# cogvideox_pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b-I2V" | |
# aether_pretrained_model_name_or_path: str = "AetherWorldModel/AetherV1" | |
# pipeline = AetherV1PipelineCogVideoX( | |
# tokenizer=AutoTokenizer.from_pretrained( | |
# cogvideox_pretrained_model_name_or_path, | |
# subfolder="tokenizer", | |
# ), | |
# text_encoder=T5EncoderModel.from_pretrained( | |
# cogvideox_pretrained_model_name_or_path, subfolder="text_encoder" | |
# ), | |
# vae=AutoencoderKLCogVideoX.from_pretrained( | |
# cogvideox_pretrained_model_name_or_path, subfolder="vae" | |
# ), | |
# scheduler=CogVideoXDPMScheduler.from_pretrained( | |
# cogvideox_pretrained_model_name_or_path, subfolder="scheduler" | |
# ), | |
# transformer=CogVideoXTransformer3DModel.from_pretrained( | |
# aether_pretrained_model_name_or_path, subfolder="transformer" | |
# ), | |
# ) | |
# pipeline.vae.enable_slicing() | |
# pipeline.vae.enable_tiling() | |
pipeline.to(device) | |
return pipeline | |
def get_window_starts( | |
total_frames: int, sliding_window_size: int, temporal_stride: int | |
) -> List[int]: | |
"""Calculate window start indices.""" | |
starts = list( | |
range( | |
0, | |
total_frames - sliding_window_size + 1, | |
temporal_stride, | |
) | |
) | |
if ( | |
total_frames > sliding_window_size | |
and (total_frames - sliding_window_size) % temporal_stride != 0 | |
): | |
starts.append(total_frames - sliding_window_size) | |
return starts | |
def blend_and_merge_window_results( | |
window_results: List[AetherV1PipelineOutput], window_indices: List[int], args: Dict | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: | |
"""Blend and merge window results.""" | |
merged_rgb = None | |
merged_disparity = None | |
merged_poses = None | |
merged_focals = None | |
align_pointmaps = args.get("align_pointmaps", True) | |
smooth_camera = args.get("smooth_camera", True) | |
smooth_method = args.get("smooth_method", "kalman") if smooth_camera else "none" | |
if align_pointmaps: | |
merged_pointmaps = None | |
w1 = window_results[0].disparity | |
for idx, (window_result, t_start) in enumerate(zip(window_results, window_indices)): | |
t_end = t_start + window_result.rgb.shape[0] | |
if idx == 0: | |
merged_rgb = window_result.rgb | |
merged_disparity = window_result.disparity | |
pointmap_dict = postprocess_pointmap( | |
window_result.disparity, | |
window_result.raymap, | |
vae_downsample_scale=8, | |
ray_o_scale_inv=0.1, | |
smooth_camera=smooth_camera, | |
smooth_method=smooth_method if smooth_camera else "none", | |
) | |
merged_poses = pointmap_dict["camera_pose"] | |
merged_focals = ( | |
pointmap_dict["intrinsics"][:, 0, 0] | |
+ pointmap_dict["intrinsics"][:, 1, 1] | |
) / 2 | |
if align_pointmaps: | |
merged_pointmaps = pointmap_dict["pointmap"] | |
else: | |
overlap_t = window_indices[idx - 1] + window_result.rgb.shape[0] - t_start | |
window_disparity = window_result.disparity | |
# Align disparity | |
disp_mask = window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]) > 0.1 | |
scale = compute_scale( | |
window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]), | |
merged_disparity[-overlap_t:].reshape(1, -1, w1.shape[-1]), | |
disp_mask.reshape(1, -1, w1.shape[-1]), | |
) | |
window_disparity = scale * window_disparity | |
# Blend disparity | |
result_disparity = np.ones((t_end, *w1.shape[1:])) | |
result_disparity[:t_start] = merged_disparity[:t_start] | |
result_disparity[t_start + overlap_t :] = window_disparity[overlap_t:] | |
weight = np.linspace(1, 0, overlap_t)[:, None, None] | |
result_disparity[t_start : t_start + overlap_t] = merged_disparity[ | |
t_start : t_start + overlap_t | |
] * weight + window_disparity[:overlap_t] * (1 - weight) | |
merged_disparity = result_disparity | |
# Blend RGB | |
result_rgb = np.ones((t_end, *w1.shape[1:], 3)) | |
result_rgb[:t_start] = merged_rgb[:t_start] | |
result_rgb[t_start + overlap_t :] = window_result.rgb[overlap_t:] | |
weight_rgb = np.linspace(1, 0, overlap_t)[:, None, None, None] | |
result_rgb[t_start : t_start + overlap_t] = merged_rgb[ | |
t_start : t_start + overlap_t | |
] * weight_rgb + window_result.rgb[:overlap_t] * (1 - weight_rgb) | |
merged_rgb = result_rgb | |
# Align poses | |
window_raymap = window_result.raymap | |
window_poses, window_Fov_x, window_Fov_y = raymap_to_poses( | |
window_raymap, ray_o_scale_inv=0.1 | |
) | |
rel_r, rel_t, rel_s = align_camera_extrinsics( | |
torch.from_numpy(window_poses[:overlap_t]), | |
torch.from_numpy(merged_poses[-overlap_t:]), | |
) | |
aligned_window_poses = ( | |
apply_transformation( | |
torch.from_numpy(window_poses), | |
rel_r, | |
rel_t, | |
rel_s, | |
return_extri=True, | |
) | |
.cpu() | |
.numpy() | |
) | |
result_poses = np.ones((t_end, 4, 4)) | |
result_poses[:t_start] = merged_poses[:t_start] | |
result_poses[t_start + overlap_t :] = aligned_window_poses[overlap_t:] | |
# Interpolate poses in overlap region | |
weights = np.linspace(1, 0, overlap_t) | |
for t in range(overlap_t): | |
weight = weights[t] | |
pose1 = merged_poses[t_start + t] | |
pose2 = aligned_window_poses[t] | |
result_poses[t_start + t] = interpolate_poses(pose1, pose2, weight) | |
merged_poses = result_poses | |
# Align intrinsics | |
window_intrinsics, _ = get_intrinsics( | |
batch_size=window_poses.shape[0], | |
h=window_result.disparity.shape[1], | |
w=window_result.disparity.shape[2], | |
fovx=window_Fov_x, | |
fovy=window_Fov_y, | |
) | |
window_focals = ( | |
window_intrinsics[:, 0, 0] + window_intrinsics[:, 1, 1] | |
) / 2 | |
scale = (merged_focals[-overlap_t:] / window_focals[:overlap_t]).mean() | |
window_focals = scale * window_focals | |
result_focals = np.ones((t_end,)) | |
result_focals[:t_start] = merged_focals[:t_start] | |
result_focals[t_start + overlap_t :] = window_focals[overlap_t:] | |
weight = np.linspace(1, 0, overlap_t) | |
result_focals[t_start : t_start + overlap_t] = merged_focals[ | |
t_start : t_start + overlap_t | |
] * weight + window_focals[:overlap_t] * (1 - weight) | |
merged_focals = result_focals | |
if align_pointmaps: | |
# Align pointmaps | |
window_pointmaps = postprocess_pointmap( | |
result_disparity[t_start:], | |
window_raymap, | |
vae_downsample_scale=8, | |
camera_pose=aligned_window_poses, | |
focal=window_focals, | |
ray_o_scale_inv=0.1, | |
smooth_camera=smooth_camera, | |
smooth_method=smooth_method if smooth_camera else "none", | |
) | |
result_pointmaps = np.ones((t_end, *w1.shape[1:], 3)) | |
result_pointmaps[:t_start] = merged_pointmaps[:t_start] | |
result_pointmaps[t_start + overlap_t :] = window_pointmaps["pointmap"][ | |
overlap_t: | |
] | |
weight = np.linspace(1, 0, overlap_t)[:, None, None, None] | |
result_pointmaps[t_start : t_start + overlap_t] = merged_pointmaps[ | |
t_start : t_start + overlap_t | |
] * weight + window_pointmaps["pointmap"][:overlap_t] * (1 - weight) | |
merged_pointmaps = result_pointmaps | |
# project to pointmaps | |
height = args.get("height", 480) | |
width = args.get("width", 720) | |
intrinsics = [ | |
np.array([[f, 0, 0.5 * width], [0, f, 0.5 * height], [0, 0, 1]]) | |
for f in merged_focals | |
] | |
if align_pointmaps: | |
pointmaps = merged_pointmaps | |
else: | |
pointmaps = np.stack( | |
[ | |
project( | |
1 / np.clip(merged_disparity[i], 1e-8, 1e8), | |
intrinsics[i], | |
merged_poses[i], | |
) | |
for i in range(merged_poses.shape[0]) | |
] | |
) | |
return merged_rgb, merged_disparity, merged_poses, pointmaps | |
def process_video_to_frames(video_path: str, fps_sample: int = 12) -> List[str]: | |
"""Process video into frames and save them locally.""" | |
# Create a unique output directory | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_dir = f"temp_frames_{timestamp}" | |
os.makedirs(output_dir, exist_ok=True) | |
# Read video | |
video = iio.imread(video_path) | |
# Calculate frame interval based on original video fps | |
if isinstance(video, np.ndarray): | |
# For captured videos | |
total_frames = len(video) | |
frame_interval = max( | |
1, round(total_frames / (fps_sample * (total_frames / 30))) | |
) | |
else: | |
# Default if can't determine | |
frame_interval = 2 | |
frame_paths = [] | |
for i, frame in enumerate(video[::frame_interval]): | |
frame_path = os.path.join(output_dir, f"frame_{i:04d}.jpg") | |
if isinstance(frame, np.ndarray): | |
iio.imwrite(frame_path, frame) | |
frame_paths.append(frame_path) | |
return frame_paths, output_dir | |
def save_output_files( | |
rgb: np.ndarray, | |
disparity: np.ndarray, | |
poses: Optional[np.ndarray] = None, | |
raymap: Optional[np.ndarray] = None, | |
pointmap: Optional[np.ndarray] = None, | |
task: str = "reconstruction", | |
output_dir: str = "outputs", | |
**kwargs, | |
) -> Dict[str, str]: | |
""" | |
Save outputs and return paths to saved files. | |
""" | |
os.makedirs(output_dir, exist_ok=True) | |
if pointmap is None and raymap is not None: | |
# Generate pointmap from raymap and disparity | |
smooth_camera = kwargs.get("smooth_camera", True) | |
smooth_method = ( | |
kwargs.get("smooth_method", "kalman") if smooth_camera else "none" | |
) | |
pointmap_dict = postprocess_pointmap( | |
disparity, | |
raymap, | |
vae_downsample_scale=8, | |
ray_o_scale_inv=0.1, | |
smooth_camera=smooth_camera, | |
smooth_method=smooth_method, | |
) | |
pointmap = pointmap_dict["pointmap"] | |
if poses is None and raymap is not None: | |
poses, _, _ = raymap_to_poses(raymap, ray_o_scale_inv=0.1) | |
# Create a unique filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
base_filename = f"{task}_{timestamp}" | |
# Paths for saved files | |
paths = {} | |
# Save RGB video | |
rgb_path = os.path.join(output_dir, f"{base_filename}_rgb.mp4") | |
iio.imwrite( | |
rgb_path, | |
(np.clip(rgb, 0, 1) * 255).astype(np.uint8), | |
fps=kwargs.get("fps", 12), | |
) | |
paths["rgb"] = rgb_path | |
# Save depth/disparity video | |
depth_path = os.path.join(output_dir, f"{base_filename}_disparity.mp4") | |
iio.imwrite( | |
depth_path, | |
(colorize_depth(disparity) * 255).astype(np.uint8), | |
fps=kwargs.get("fps", 12), | |
) | |
paths["disparity"] = depth_path | |
# Save point cloud GLB files | |
if pointmap is not None and poses is not None: | |
pointcloud_save_frame_interval = kwargs.get( | |
"pointcloud_save_frame_interval", 10 | |
) | |
max_depth = kwargs.get("max_depth", 100.0) | |
rtol = kwargs.get("rtol", 0.03) | |
glb_paths = [] | |
# Determine which frames to save based on the interval | |
frames_to_save = list( | |
range(0, pointmap.shape[0], pointcloud_save_frame_interval) | |
) | |
# Always include the first and last frame | |
if 0 not in frames_to_save: | |
frames_to_save.insert(0, 0) | |
if pointmap.shape[0] - 1 not in frames_to_save: | |
frames_to_save.append(pointmap.shape[0] - 1) | |
# Sort the frames to ensure they're in order | |
frames_to_save = sorted(set(frames_to_save)) | |
for frame_idx in frames_to_save: | |
if frame_idx >= pointmap.shape[0]: | |
continue | |
predictions = { | |
"world_points": pointmap[frame_idx : frame_idx + 1], | |
"images": rgb[frame_idx : frame_idx + 1], | |
"depths": 1 / np.clip(disparity[frame_idx : frame_idx + 1], 1e-8, 1e8), | |
"camera_poses": poses[frame_idx : frame_idx + 1], | |
} | |
glb_path = os.path.join( | |
output_dir, f"{base_filename}_pointcloud_frame_{frame_idx}.glb" | |
) | |
scene_3d = predictions_to_glb( | |
predictions, | |
filter_by_frames="all", | |
show_cam=True, | |
max_depth=max_depth, | |
rtol=rtol, | |
frame_rel_idx=float(frame_idx) / pointmap.shape[0], | |
) | |
scene_3d.export(glb_path) | |
glb_paths.append(glb_path) | |
paths["pointcloud_glbs"] = glb_paths | |
return paths | |
def process_reconstruction( | |
video_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
sliding_window_stride, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
progress=gr.Progress(), | |
): | |
""" | |
Process reconstruction task. | |
""" | |
try: | |
gc.collect() | |
torch.cuda.empty_cache() | |
# 设置随机种子 | |
seed_all(seed) | |
# 检查CUDA是否可用 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if not torch.cuda.is_available(): | |
raise ValueError("CUDA is not available. Check your environment.") | |
pipeline = build_pipeline(device) | |
progress(0.1, "Loading video") | |
# Check if video_file is a string or a file object | |
if isinstance(video_file, str): | |
video_path = video_file | |
else: | |
video_path = video_file.name | |
video = iio.imread(video_path).astype(np.float32) / 255.0 | |
# Setup arguments | |
args = { | |
"height": height, | |
"width": width, | |
"num_frames": num_frames, | |
"sliding_window_stride": sliding_window_stride, | |
"smooth_camera": smooth_camera, | |
"smooth_method": "kalman" if smooth_camera else "none", | |
"align_pointmaps": align_pointmaps, | |
"max_depth": max_depth, | |
"rtol": rtol, | |
"pointcloud_save_frame_interval": pointcloud_save_frame_interval, | |
} | |
# Process in sliding windows | |
window_results = [] | |
window_indices = get_window_starts( | |
len(video), num_frames, sliding_window_stride | |
) | |
progress(0.2, f"Processing video in {len(window_indices)} windows") | |
for i, start_idx in enumerate(window_indices): | |
progress_val = 0.2 + (0.6 * (i / len(window_indices))) | |
progress(progress_val, f"Processing window {i+1}/{len(window_indices)}") | |
output = pipeline( | |
task="reconstruction", | |
image=None, | |
goal=None, | |
video=video[start_idx : start_idx + num_frames], | |
raymap=None, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
fps=fps, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
use_dynamic_cfg=False, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
) | |
window_results.append(output) | |
progress(0.8, "Merging results from all windows") | |
# Merge window results | |
( | |
merged_rgb, | |
merged_disparity, | |
merged_poses, | |
pointmaps, | |
) = blend_and_merge_window_results(window_results, window_indices, args) | |
progress(0.9, "Saving output files") | |
# Save output files | |
output_dir = "outputs" | |
os.makedirs(output_dir, exist_ok=True) | |
output_paths = save_output_files( | |
rgb=merged_rgb, | |
disparity=merged_disparity, | |
poses=merged_poses, | |
pointmap=pointmaps, | |
task="reconstruction", | |
output_dir=output_dir, | |
fps=12, | |
**args, | |
) | |
progress(1.0, "Done!") | |
# Return paths for displaying | |
return ( | |
output_paths["rgb"], | |
output_paths["disparity"], | |
output_paths.get("pointcloud_glbs", []), | |
) | |
except Exception: | |
import traceback | |
traceback.print_exc() | |
return None, None, [] | |
def process_prediction( | |
image_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
use_dynamic_cfg, | |
raymap_option, | |
post_reconstruction, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
progress=gr.Progress(), | |
): | |
""" | |
Process prediction task. | |
""" | |
try: | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Set random seed | |
seed_all(seed) | |
# Build the pipeline | |
pipeline = build_pipeline(device) | |
progress(0.1, "Loading image") | |
# Check if image_file is a string or a file object | |
if isinstance(image_file, str): | |
image_path = image_file | |
else: | |
image_path = image_file.name | |
image = PIL.Image.open(image_path) | |
progress(0.2, "Running prediction") | |
# Run prediction | |
output = pipeline( | |
task="prediction", | |
image=image, | |
video=None, | |
goal=None, | |
raymap=np.load(f"assets/example_raymaps/raymap_{raymap_option}.npy"), | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
fps=fps, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
use_dynamic_cfg=use_dynamic_cfg, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
return_dict=True, | |
) | |
# Show RGB output immediately | |
rgb_output = output.rgb | |
# Setup arguments for saving | |
args = { | |
"height": height, | |
"width": width, | |
"smooth_camera": smooth_camera, | |
"smooth_method": "kalman" if smooth_camera else "none", | |
"align_pointmaps": align_pointmaps, | |
"max_depth": max_depth, | |
"rtol": rtol, | |
"pointcloud_save_frame_interval": pointcloud_save_frame_interval, | |
} | |
if post_reconstruction: | |
progress(0.5, "Running post-reconstruction for better quality") | |
recon_output = pipeline( | |
task="reconstruction", | |
video=output.rgb, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
fps=fps, | |
num_inference_steps=4, | |
guidance_scale=1.0, | |
use_dynamic_cfg=False, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
) | |
disparity = recon_output.disparity | |
raymap = recon_output.raymap | |
else: | |
disparity = output.disparity | |
raymap = output.raymap | |
progress(0.8, "Saving output files") | |
# Save output files | |
output_dir = "outputs" | |
os.makedirs(output_dir, exist_ok=True) | |
output_paths = save_output_files( | |
rgb=rgb_output, | |
disparity=disparity, | |
raymap=raymap, | |
task="prediction", | |
output_dir=output_dir, | |
fps=12, | |
**args, | |
) | |
progress(1.0, "Done!") | |
# Return paths for displaying | |
return ( | |
output_paths["rgb"], | |
output_paths["disparity"], | |
output_paths.get("pointcloud_glbs", []), | |
) | |
except Exception: | |
import traceback | |
traceback.print_exc() | |
return None, None, [] | |
def process_planning( | |
image_file, | |
goal_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
use_dynamic_cfg, | |
post_reconstruction, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
progress=gr.Progress(), | |
): | |
""" | |
Process planning task. | |
""" | |
try: | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Set random seed | |
seed_all(seed) | |
# Check if CUDA is available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if not torch.cuda.is_available(): | |
raise ValueError("CUDA is not available. Check your environment.") | |
# Build the pipeline | |
pipeline = build_pipeline(device) | |
progress(0.1, "Loading images") | |
# Check if image_file and goal_file are strings or file objects | |
if isinstance(image_file, str): | |
image_path = image_file | |
else: | |
image_path = image_file.name | |
if isinstance(goal_file, str): | |
goal_path = goal_file | |
else: | |
goal_path = goal_file.name | |
image = PIL.Image.open(image_path) | |
goal = PIL.Image.open(goal_path) | |
progress(0.2, "Running planning") | |
# Run planning | |
output = pipeline( | |
task="planning", | |
image=image, | |
video=None, | |
goal=goal, | |
raymap=None, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
fps=fps, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
use_dynamic_cfg=use_dynamic_cfg, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
return_dict=True, | |
) | |
# Show RGB output immediately | |
rgb_output = output.rgb | |
# Setup arguments for saving | |
args = { | |
"height": height, | |
"width": width, | |
"smooth_camera": smooth_camera, | |
"smooth_method": "kalman" if smooth_camera else "none", | |
"align_pointmaps": align_pointmaps, | |
"max_depth": max_depth, | |
"rtol": rtol, | |
"pointcloud_save_frame_interval": pointcloud_save_frame_interval, | |
} | |
if post_reconstruction: | |
progress(0.5, "Running post-reconstruction for better quality") | |
recon_output = pipeline( | |
task="reconstruction", | |
video=output.rgb, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
fps=12, | |
num_inference_steps=4, | |
guidance_scale=1.0, | |
use_dynamic_cfg=False, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
) | |
disparity = recon_output.disparity | |
raymap = recon_output.raymap | |
else: | |
disparity = output.disparity | |
raymap = output.raymap | |
progress(0.8, "Saving output files") | |
# Save output files | |
output_dir = "outputs" | |
os.makedirs(output_dir, exist_ok=True) | |
output_paths = save_output_files( | |
rgb=rgb_output, | |
disparity=disparity, | |
raymap=raymap, | |
task="planning", | |
output_dir=output_dir, | |
fps=fps, | |
**args, | |
) | |
progress(1.0, "Done!") | |
# Return paths for displaying | |
return ( | |
output_paths["rgb"], | |
output_paths["disparity"], | |
output_paths.get("pointcloud_glbs", []), | |
) | |
except Exception: | |
import traceback | |
traceback.print_exc() | |
return None, None, [] | |
def update_task_ui(task): | |
"""Update UI elements based on selected task.""" | |
if task == "reconstruction": | |
return ( | |
gr.update(visible=True), # video_input | |
gr.update(visible=False), # image_input | |
gr.update(visible=False), # goal_input | |
gr.update(visible=False), # image_preview | |
gr.update(visible=False), # goal_preview | |
gr.update(value=4), # num_inference_steps | |
gr.update(visible=True), # sliding_window_stride | |
gr.update(visible=False), # use_dynamic_cfg | |
gr.update(visible=False), # raymap_option | |
gr.update(visible=False), # post_reconstruction | |
gr.update(value=1.0), # guidance_scale | |
) | |
elif task == "prediction": | |
return ( | |
gr.update(visible=False), # video_input | |
gr.update(visible=True), # image_input | |
gr.update(visible=False), # goal_input | |
gr.update(visible=True), # image_preview | |
gr.update(visible=False), # goal_preview | |
gr.update(value=50), # num_inference_steps | |
gr.update(visible=False), # sliding_window_stride | |
gr.update(visible=True), # use_dynamic_cfg | |
gr.update(visible=True), # raymap_option | |
gr.update(visible=True), # post_reconstruction | |
gr.update(value=3.0), # guidance_scale | |
) | |
elif task == "planning": | |
return ( | |
gr.update(visible=False), # video_input | |
gr.update(visible=True), # image_input | |
gr.update(visible=True), # goal_input | |
gr.update(visible=True), # image_preview | |
gr.update(visible=True), # goal_preview | |
gr.update(value=50), # num_inference_steps | |
gr.update(visible=False), # sliding_window_stride | |
gr.update(visible=True), # use_dynamic_cfg | |
gr.update(visible=False), # raymap_option | |
gr.update(visible=True), # post_reconstruction | |
gr.update(value=3.0), # guidance_scale | |
) | |
def update_image_preview(image_file): | |
"""Update the image preview.""" | |
if image_file: | |
return image_file.name | |
return None | |
def update_goal_preview(goal_file): | |
"""Update the goal preview.""" | |
if goal_file: | |
return goal_file.name | |
return None | |
def get_download_link(selected_frame, all_paths): | |
"""Update the download button with the selected file path.""" | |
if not selected_frame or not all_paths: | |
return gr.update(visible=False, value=None) | |
frame_num = int(re.search(r"Frame (\d+)", selected_frame).group(1)) | |
for path in all_paths: | |
if f"frame_{frame_num}" in path: | |
# Make sure the file exists before setting it | |
if os.path.exists(path): | |
return gr.update(visible=True, value=path, interactive=True) | |
return gr.update(visible=False, value=None) | |
# Theme setup | |
theme = gr.themes.Default( | |
primary_hue="blue", | |
secondary_hue="cyan", | |
) | |
with gr.Blocks( | |
theme=theme, | |
css=""" | |
.output-column { | |
min-height: 400px; | |
} | |
.warning { | |
color: #ff9800; | |
font-weight: bold; | |
} | |
.highlight { | |
background-color: rgba(0, 123, 255, 0.1); | |
padding: 10px; | |
border-radius: 8px; | |
border-left: 5px solid #007bff; | |
margin: 10px 0; | |
} | |
.task-header { | |
margin-top: 10px; | |
margin-bottom: 15px; | |
font-size: 1.2em; | |
font-weight: bold; | |
color: #007bff; | |
} | |
.flex-display { | |
display: flex; | |
flex-wrap: wrap; | |
gap: 10px; | |
} | |
.output-subtitle { | |
font-size: 1.1em; | |
margin-top: 5px; | |
margin-bottom: 5px; | |
color: #505050; | |
} | |
.input-section, .params-section, .advanced-section { | |
border: 1px solid #ddd; | |
padding: 15px; | |
border-radius: 8px; | |
margin-bottom: 15px; | |
} | |
.logo-container { | |
display: flex; | |
justify-content: center; | |
margin-bottom: 20px; | |
} | |
.logo-image { | |
max-width: 300px; | |
height: auto; | |
} | |
""", | |
) as demo: | |
with gr.Row(elem_classes=["logo-container"]): | |
gr.Image("assets/logo.png", show_label=False, elem_classes=["logo-image"]) | |
gr.Markdown( | |
""" | |
# Aether: Geometric-Aware Unified World Modeling | |
Aether addresses a fundamental challenge in AI: integrating geometric reconstruction with | |
generative modeling for human-like spatial reasoning. Our framework unifies three core capabilities: | |
1. **4D dynamic reconstruction** - Reconstruct dynamic point clouds from videos by estimating depths and camera poses. | |
2. **Action-Conditioned Video Prediction** - Predict future frames based on initial observation images, with optional conditions of camera trajectory actions. | |
3. **Goal-Conditioned Visual Planning** - Generate planning paths from pairs of observation and goal images. | |
Trained entirely on synthetic data, Aether achieves strong zero-shot generalization to real-world scenarios. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
task = gr.Radio( | |
["reconstruction", "prediction", "planning"], | |
label="Select Task", | |
value="reconstruction", | |
info="Choose the task you want to perform", | |
) | |
with gr.Group(elem_classes=["input-section"]): | |
# Input section - changes based on task | |
gr.Markdown("## 📥 Input", elem_classes=["task-header"]) | |
# Task-specific inputs | |
video_input = gr.Video( | |
label="Upload Input Video", | |
sources=["upload"], | |
visible=True, | |
interactive=True, | |
elem_id="video_input", | |
) | |
image_input = gr.File( | |
label="Upload Start Image", | |
file_count="single", | |
file_types=["image"], | |
visible=False, | |
interactive=True, | |
elem_id="image_input", | |
) | |
goal_input = gr.File( | |
label="Upload Goal Image", | |
file_count="single", | |
file_types=["image"], | |
visible=False, | |
interactive=True, | |
elem_id="goal_input", | |
) | |
with gr.Row(visible=False) as preview_row: | |
image_preview = gr.Image( | |
label="Start Image Preview", | |
elem_id="image_preview", | |
visible=False, | |
) | |
goal_preview = gr.Image( | |
label="Goal Image Preview", | |
elem_id="goal_preview", | |
visible=False, | |
) | |
with gr.Group(elem_classes=["params-section"]): | |
gr.Markdown("## ⚙️ Parameters", elem_classes=["task-header"]) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
height = gr.Dropdown( | |
choices=[480], | |
value=480, | |
label="Height", | |
info="Height of the output video", | |
) | |
with gr.Column(scale=1): | |
width = gr.Dropdown( | |
choices=[720], | |
value=720, | |
label="Width", | |
info="Width of the output video", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
num_frames = gr.Dropdown( | |
choices=[17, 25, 33, 41], | |
value=41, | |
label="Number of Frames", | |
info="Number of frames to predict", | |
) | |
with gr.Column(scale=1): | |
fps = gr.Dropdown( | |
choices=[8, 10, 12, 15, 24], | |
value=12, | |
label="FPS", | |
info="Frames per second", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
num_inference_steps = gr.Slider( | |
minimum=1, | |
maximum=60, | |
value=4, | |
step=1, | |
label="Inference Steps", | |
info="Number of inference step", | |
) | |
sliding_window_stride = gr.Slider( | |
minimum=1, | |
maximum=40, | |
value=24, | |
step=1, | |
label="Sliding Window Stride", | |
info="Sliding window stride (window size equals to num_frames). Only used for 'reconstruction' task", | |
visible=True, | |
) | |
use_dynamic_cfg = gr.Checkbox( | |
label="Use Dynamic CFG", | |
value=True, | |
info="Use dynamic CFG", | |
visible=False, | |
) | |
raymap_option = gr.Radio( | |
choices=["backward", "forward_right", "left_forward", "right"], | |
label="Camera Movement Direction", | |
value="forward_right", | |
info="Direction of camera action. We offer 4 pre-defined actions for you to choose from.", | |
visible=False, | |
) | |
post_reconstruction = gr.Checkbox( | |
label="Post-Reconstruction", | |
value=True, | |
info="Run reconstruction after prediction for better quality", | |
visible=False, | |
) | |
with gr.Accordion( | |
"Advanced Options", open=False, visible=True | |
) as advanced_options: | |
with gr.Group(elem_classes=["advanced-section"]): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
guidance_scale = gr.Slider( | |
minimum=1.0, | |
maximum=10.0, | |
value=1.0, | |
step=0.1, | |
label="Guidance Scale", | |
info="Guidance scale (only for prediction / planning)", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
seed = gr.Number( | |
value=42, | |
label="Random Seed", | |
info="Set a seed for reproducible results", | |
precision=0, | |
minimum=0, | |
maximum=2147483647, | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
smooth_camera = gr.Checkbox( | |
label="Smooth Camera", | |
value=True, | |
info="Apply smoothing to camera trajectory", | |
) | |
with gr.Column(scale=1): | |
align_pointmaps = gr.Checkbox( | |
label="Align Point Maps", | |
value=False, | |
info="Align point maps across frames", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
max_depth = gr.Slider( | |
minimum=10, | |
maximum=200, | |
value=60, | |
step=10, | |
label="Max Depth", | |
info="Maximum depth for point cloud (higher = more distant points)", | |
) | |
with gr.Column(scale=1): | |
rtol = gr.Slider( | |
minimum=0.01, | |
maximum=2.0, | |
value=0.03, | |
step=0.01, | |
label="Relative Tolerance", | |
info="Used for depth edge detection. Lower = remove more edges", | |
) | |
pointcloud_save_frame_interval = gr.Slider( | |
minimum=1, | |
maximum=20, | |
value=10, | |
step=1, | |
label="Point Cloud Frame Interval", | |
info="Save point cloud every N frames (higher = fewer files but less complete representation)", | |
) | |
run_button = gr.Button("Run Aether", variant="primary") | |
with gr.Column(scale=1, elem_classes=["output-column"]): | |
with gr.Group(): | |
gr.Markdown("## 📤 Output", elem_classes=["task-header"]) | |
gr.Markdown("### RGB Video", elem_classes=["output-subtitle"]) | |
rgb_output = gr.Video( | |
label="RGB Output", interactive=False, elem_id="rgb_output" | |
) | |
gr.Markdown("### Depth Video", elem_classes=["output-subtitle"]) | |
depth_output = gr.Video( | |
label="Depth Output", interactive=False, elem_id="depth_output" | |
) | |
gr.Markdown("### Point Clouds", elem_classes=["output-subtitle"]) | |
with gr.Row(elem_classes=["flex-display"]): | |
pointcloud_frames = gr.Dropdown( | |
label="Select Frame", | |
choices=[], | |
value=None, | |
interactive=True, | |
elem_id="pointcloud_frames", | |
) | |
pointcloud_download = gr.DownloadButton( | |
label="Download Point Cloud", | |
visible=False, | |
elem_id="pointcloud_download", | |
) | |
model_output = gr.Model3D( | |
label="Point Cloud Viewer", interactive=True, elem_id="model_output" | |
) | |
with gr.Tab("About Results"): | |
gr.Markdown( | |
""" | |
### Understanding the Outputs | |
- **RGB Video**: Shows the predicted or reconstructed RGB frames | |
- **Depth Video**: Visualizes the disparity maps in color (closer = red, further = blue) | |
- **Point Clouds**: Interactive 3D point cloud with camera positions shown as colored pyramids | |
<p class="warning">Note: 3D point clouds take a long time to visualize, and we show the keyframes only. | |
You can control the keyframe interval by modifying the `pointcloud_save_frame_interval`.</p> | |
""" | |
) | |
# Event handlers | |
task.change( | |
fn=update_task_ui, | |
inputs=[task], | |
outputs=[ | |
video_input, | |
image_input, | |
goal_input, | |
image_preview, | |
goal_preview, | |
num_inference_steps, | |
sliding_window_stride, | |
use_dynamic_cfg, | |
raymap_option, | |
post_reconstruction, | |
guidance_scale, | |
], | |
) | |
image_input.change( | |
fn=update_image_preview, inputs=[image_input], outputs=[image_preview] | |
).then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[preview_row]) | |
goal_input.change( | |
fn=update_goal_preview, inputs=[goal_input], outputs=[goal_preview] | |
).then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[preview_row]) | |
def update_pointcloud_frames(pointcloud_paths): | |
"""Update the pointcloud frames dropdown with available frames.""" | |
if not pointcloud_paths: | |
return gr.update(choices=[], value=None), None, gr.update(visible=False) | |
# Extract frame numbers from filenames | |
frame_info = [] | |
for path in pointcloud_paths: | |
filename = os.path.basename(path) | |
match = re.search(r"frame_(\d+)", filename) | |
if match: | |
frame_num = int(match.group(1)) | |
frame_info.append((f"Frame {frame_num}", path)) | |
# Sort by frame number | |
frame_info.sort(key=lambda x: int(re.search(r"Frame (\d+)", x[0]).group(1))) | |
choices = [label for label, _ in frame_info] | |
paths = [path for _, path in frame_info] | |
if not choices: | |
return gr.update(choices=[], value=None), None, gr.update(visible=False) | |
# Make download button visible when we have point cloud files | |
return ( | |
gr.update(choices=choices, value=choices[0]), | |
paths[0], | |
gr.update(visible=True), | |
) | |
def select_pointcloud_frame(frame_label, all_paths): | |
"""Select a specific pointcloud frame.""" | |
if not frame_label or not all_paths: | |
return None | |
frame_num = int(re.search(r"Frame (\d+)", frame_label).group(1)) | |
for path in all_paths: | |
if f"frame_{frame_num}" in path: | |
return path | |
return None | |
# Then in the run button click handler: | |
def process_task(task_type, *args): | |
"""Process selected task with appropriate function.""" | |
if task_type == "reconstruction": | |
rgb_path, depth_path, pointcloud_paths = process_reconstruction(*args) | |
# Update the pointcloud frames dropdown | |
frame_dropdown, initial_path, download_visible = update_pointcloud_frames( | |
pointcloud_paths | |
) | |
return ( | |
rgb_path, | |
depth_path, | |
initial_path, | |
frame_dropdown, | |
pointcloud_paths, | |
download_visible, | |
) | |
elif task_type == "prediction": | |
rgb_path, depth_path, pointcloud_paths = process_prediction(*args) | |
frame_dropdown, initial_path, download_visible = update_pointcloud_frames( | |
pointcloud_paths | |
) | |
return ( | |
rgb_path, | |
depth_path, | |
initial_path, | |
frame_dropdown, | |
pointcloud_paths, | |
download_visible, | |
) | |
elif task_type == "planning": | |
rgb_path, depth_path, pointcloud_paths = process_planning(*args) | |
frame_dropdown, initial_path, download_visible = update_pointcloud_frames( | |
pointcloud_paths | |
) | |
return ( | |
rgb_path, | |
depth_path, | |
initial_path, | |
frame_dropdown, | |
pointcloud_paths, | |
download_visible, | |
) | |
return ( | |
None, | |
None, | |
None, | |
gr.update(choices=[], value=None), | |
[], | |
gr.update(visible=False), | |
) | |
# Store all pointcloud paths for later use | |
all_pointcloud_paths = gr.State([]) | |
run_button.click( | |
fn=lambda task_type, | |
video_file, | |
image_file, | |
goal_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
sliding_window_stride, | |
use_dynamic_cfg, | |
raymap_option, | |
post_reconstruction, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed: process_task( | |
task_type, | |
*( | |
[ | |
video_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
sliding_window_stride, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
] | |
if task_type == "reconstruction" | |
else [ | |
image_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
use_dynamic_cfg, | |
raymap_option, | |
post_reconstruction, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
] | |
if task_type == "prediction" | |
else [ | |
image_file, | |
goal_file, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
use_dynamic_cfg, | |
post_reconstruction, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
] | |
), | |
), | |
inputs=[ | |
task, | |
video_input, | |
image_input, | |
goal_input, | |
height, | |
width, | |
num_frames, | |
num_inference_steps, | |
guidance_scale, | |
sliding_window_stride, | |
use_dynamic_cfg, | |
raymap_option, | |
post_reconstruction, | |
fps, | |
smooth_camera, | |
align_pointmaps, | |
max_depth, | |
rtol, | |
pointcloud_save_frame_interval, | |
seed, | |
], | |
outputs=[ | |
rgb_output, | |
depth_output, | |
model_output, | |
pointcloud_frames, | |
all_pointcloud_paths, | |
pointcloud_download, | |
], | |
) | |
pointcloud_frames.change( | |
fn=select_pointcloud_frame, | |
inputs=[pointcloud_frames, all_pointcloud_paths], | |
outputs=[model_output], | |
).then( | |
fn=get_download_link, | |
inputs=[pointcloud_frames, all_pointcloud_paths], | |
outputs=[pointcloud_download], | |
) | |
# Example Accordion | |
with gr.Accordion("Examples"): | |
gr.Markdown( | |
""" | |
### Examples will be added soon | |
Check back for example inputs for each task type. | |
""" | |
) | |
# Load the model at startup | |
demo.load(lambda: build_pipeline(torch.device("cpu")), inputs=None, outputs=None) | |
if __name__ == "__main__": | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
demo.queue(max_size=20).launch(show_error=True, share=True) | |