import spaces import gradio as gr import argparse import sys import time import os import random from skyreelsinfer.offload import OffloadConfig from skyreelsinfer import TaskType from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer from diffusers.utils import export_to_video from diffusers.utils import load_image from PIL import Image import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False torch.backends.cuda.preferred_blas_library="cublas" torch.backends.cuda.preferred_linalg_library="cusolver" torch.set_float32_matmul_precision("high") os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1") os.environ["SAFETENSORS_FAST_GPU"] = "1" os.putenv("TOKENIZERS_PARALLELISM","False") def init_predictor(): global predictor predictor = SkyReelsVideoSingleGpuInfer( task_type= TaskType.I2V, model_id="Skywork/SkyReels-V1-Hunyuan-I2V", quant_model=False, is_offload=False, offload_config=OffloadConfig( high_cpu_memory=True, parameters_level=True, compiler_transformer=False, ) ) @spaces.GPU(duration=120) def generate_video(prompt, image, size, steps, frames, guidance_scale, progress=gr.Progress(track_tqdm=True) ): print(f"image:{type(image)}") random.seed(time.time()) seed = int(random.randrange(4294967294)) kwargs = { "prompt": prompt, "height": size, "width": size, "num_frames": frames, "num_inference_steps": steps, "seed": seed, "guidance_scale": guidance_scale, "embedded_guidance_scale": 1.0, "negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion", "cfg_for": False, } assert image is not None, "please input image" img = load_image(image=image) img.resize((size,size), Image.LANCZOS) kwargs["image"] = img output = predictor.inference(kwargs) save_dir = f"./" video_out_file = f"{seed}.mp4" print(f"generate video, local path: {video_out_file}") export_to_video(output, video_out_file, fps=24) return video_out_file def create_gradio_interface(): with gr.Blocks() as demo: with gr.Row(): image = gr.Image(label="Upload Image", type="filepath") prompt = gr.Textbox(label="Input Prompt") size = gr.Slider( label="Size", minimum=256, maximum=1024, step=16, value=368, ) frames = gr.Slider( label="Number of Frames", minimum=16, maximum=256, step=12, value=48, ) steps = gr.Slider( label="Number of Steps", minimum=1, maximum=96, step=1, value=20, ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1.0, maximum=16.0, step=.1, value=6.0, ) submit_button = gr.Button("Generate Video") output_video = gr.Video(label="Generated Video") submit_button.click( fn=generate_video, inputs=[prompt, image, size, steps, frames, guidance_scale], outputs=[output_video], ) return demo if __name__ == "__main__": init_predictor() demo = create_gradio_interface() demo.launch()